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Lifelong experiences and learned knowledge lead to shared expecta-
tions about how common situations tend to unfold. Such knowledge
of narrative event flow enables people to weave together a story. How-
ever, comparable computational tools to evaluate the flow of events
in narratives are limited. We quantify the differences between au-
tobiographical and imagined stories by introducing sequentiality, a
measure of narrative flow of events, drawing probabilistic inferences
from a cutting-edge large language model (GPT-3). Sequentiality
captures the flow of a narrative by comparing the probability of a
sentence with and without its preceding story context. We applied
our measure to study thousands of diary-like stories, collected from
crowdworkers about either a recent remembered experience or an
imagined story on the same topic. The results show that imagined
stories have higher sequentiality than autobiographical stories and
that the sequentiality of autobiographical stories increases when the
memories are retold several months later. In pursuit of deeper under-
standings of how sequentiality measures the flow of narratives, we
explore proportions of major and minor events in story sentences,
as annotated by crowdworkers. We find that lower sequentiality is
associated with higher proportions of major events. The methods
and results highlight opportunities to use cutting-edge computational
analyses, such as sequentiality, on large corpora of matched imag-
ined and autobiographical stories to investigate the influences of
memory and reasoning on language generation processes.

Natural language processing | autobiographical memory | memory con-
solidation | imagination | deep neural network | pretrained language
models

When we tell a story, we weave together sets of events to
form a coherent narrative (1–3). The narrative flow of

those events is influenced by our recollection of experiences
from episodic memory (4–6) as well as common knowledge
about prototypical sequences of events, referred to as schema
(1, 7–11). For example, telling an imagined story about a
friend’s wedding relies on common knowledge about the schema
of how a wedding in their culture unfolds. In contrast, a
recalled story drawn from memories about a friend’s wedding
involves an autobiographical recollection of episodic details
about experienced events in addition to the knowledge of
wedding schema (12). Furthermore, in autobiographical stories,
the extent to which schema and episodic details are used
in storytelling changes with time passing, as memories of
experience become consolidated and schematized into more
abstract, semantic, and “gist-like” versions (13–15).

A key element of narrative storytelling is referencing oc-
currences of salient events (16), which often deviate from
prototypical schema (17). Such salient events can range from
major (e.g., big plot twists) to minor (e.g., subtle details) (18),
and from surprising to expected. Small-scale human studies
have demonstrated that salient events often mark surprising or

expected shifts in a story (e.g., of character focus, location, or
circumstances; 19), that they stand out as particularly memo-
rable to readers (20, 21), and they can influence the emotional
impact of a narrative (22). However, how salient events con-
tribute to the narrative flow of imagined or autobiographical
stories is not well understood.

We introduce a novel computational measure, sequentiality,
to uncover how autobiographical and imagined stories differ
with respect to narrative flow and occurrences of salient events.
Sequentiality leverages probabilities of words and sentences in
stories to determine the difference in the likelihood of story
sentences conditioned on a story’s topic versus conditioned
on the story topic and the context given by all of the preced-
ing sentences (Fig. 1). In this work, we draw probabilities
from a cutting-edge and large-scale language model (GPT-
3, with 175B parameters; 23), substantially scaling up our
previous investigations (24) that employed a much smaller
language model (GPT-1, with 115M parameters; 25). By us-
ing large-scale language models, sequentiality presents a novel
characterization of narrative flow in stories, contrasting with
previous measures which either focused on detecting event
words from sentences (16, 26) or tracking attributes over time
in stories (e.g., sentiment, emotion, categories of words, or
sentence embeddings; 27–29).

We studied sequentiality and salient events in a set of 7,000
diary-like short stories about memorable life experiences, to
analyze differences in narrative flow of imagined or autobio-
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Fig. 1. Graphical models depicting the two components of sequentiality.
Sequentiality reflects the probabilistic relationship among consecutive sentences
(s0, s1, ..., si) in a story about a topic T , and is computed as the difference between
the log-likelihood of a sentence conditioned only on the story topic (i.e., topic-driven
model; top row) and the log-likelihood of that sentence conditioned on both the story
topic and all preceding sentences (i.e., contextual model; bottom row). The log-
likelihood of a sentence given a topic or topic and prior sentences is provided by the
GPT-3 neural language model.

graphical stories. Collected through crowdsourcing and made
available in the Hippocorpus data set (24), these stories were
either written about an autobiographical personal experience,
recalled shortly after it happened and retold several months
later, or about an imagined experience on the same topic. We
extended a subset of 240 Hippocorpus stories to additionally
include sentence-level human annotation of event saliency. We
applied sequentiality to these stories to analyze narrative flow
difference in autobiographical and imagined stories, and to
compare the sequentiality of sentences with various levels of
event saliency. To supplement sequentiality, we also employed
coarser-grained metrics that count the proportions of realis
event terms—references to factual, concrete, non-hypothesized
events, as well as count words in the LIWC (30) and concrete-
ness (31) lexicons to further examine the differences in stories
and event types.

We hypothesized that autobiographical and imagined sto-
ries would differ in sequentiality and event distributions; specif-
ically, that imagined stories would have higher sequentiality
since they are more likely to follow commonly expected schema
(5, 32). On the other hand, we hypothesized that autobio-
graphical stories would have lower sequentiality but higher
number of annotated salient events, based on the intuition
that those stories likely contain more specific details drawn
directly from episodic memory (5, 33) and that memorable
details of a specific experience are more likely to diverge from
the expected flow of the narrative (20). We also expected to
find an increase in sequentiality for stories that are retold after
a period of time versus freshly recalled memories, due to the
consolidation and narrativization of memories over time (14).

Sequentiality for Analyzing Narrative Flow in Stories

Sequentiality provides a measure of narrative flow based on
probabilities of story sentences given by large language models
(LLMs). We apply the measure to identify differences in the
sequencing of ideas in recalled versus imagined stories. One
might expect that imagined stories composed in real-time
would tend to be described by a contextual model where a
next sentence depends greatly on the prior sentences, with
a sequencing influenced by commonly understood schemas
(5, 32). In contrast, generating an autobiographical story may

rely less on such an incremental sequencing and prototypical
schemas (20) and be better explained by a process of organizing
and building a narrative from a set of events encoded in
episodic memory (5, 33).

The sequentiality metric compares, for all sentences of a
story, the differences in likelihood for each sentence as pre-
dicted by a contextual sequencing model versus as predicted
by a topic-driven model where each sentence is conditioned
only on the topic. That is, given sentences from a story writ-
ten about a topic T , sequentiality compares the likelihood of
each story sentence under two generative models, illustrated
in Fig. 1. The contextual generative model assumes that each
sentence is generated conditioned on the story topic as well
as all of its preceding sentences. The topic-driven generative
model assumes that every generated sentence is conditioned
only on the story topic. As such, higher values of sequentiality
for sentences suggests that the sentences follow the common
expectations given the context of the evolving story and topic,
whereas lower values suggest that sentences deviate more from
expectation, given the preceding sequence of sentences. Here,
we first briefly introduce LLMs, then formally define sequen-
tiality, and finally discuss word-based narrative measures that
we also use in our experiments.

Large-scale language models. LLMs are a new family of lan-
guage models (LMs) represented as large-scale neural networks,
which have rapidly come to serve as the foundation of most
current NLP systems (34). Formally, a language model is a
statistical model that estimates the likelihood or probability of
sequences of words, i.e., one or more sentences. We denote this
likelihood as pLM(s0:i) where s0:i = {s0, ..., si} are consecutive
sentences. LLMs are trained to estimate the likelihoods of
sentences using massive amounts of text. For example, the
model we use in our experiments (GPT-3; 23) is a 175B pa-
rameter neural LM trained on over 45TB of text data (e.g.,
books, news articles, Wikipedia pages). Through training on
such large amounts of text, LLMs also learn an estimate of
the general ordering or expected narrative flow of events and
sentences in stories (35, 36).

Formalization. Sequentiality c(si, h) is measured for each sen-
tence si of a story about topic T for a number h of preceding
sentences (the history under consideration, si−h:i−1). c(si, h)
is computed for each sentence si, as the difference in the neg-
ative log-likelihood (NLL) of the sentence, as computed by
the contextual and topic-driven models. This requires com-
puting the likelihood of each sentence, conditioned on h prior
sentences, per the history si−h:i−1 under consideration, in
addition to the words in the story topic T and, separately,
computing the likelihood of the same sentences when each is
conditioned only on the story topic T :

c(si, h) = − 1
|si|

[log pLM(si | T )︸ ︷︷ ︸
topic-driven

− log pLM(si | T , si−h:i−1)︸ ︷︷ ︸
contextual

]

where we obtain the likelihood of sentences pLM from LLMs,
and normalize the likelihoods by sentence length |si| to ac-
count for sentence-length variation. We then define the overall
sequentiality of the entire story as the average sequentiality of
its sentences.

In our analyses, we examined the average sequentiality per
story for history sizes ranging from one to nine preceding
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Fig. 2. Differences in sequentiality in recalled, retold, and imagined stories. (A) Mean sequentiality of stories with varying history lengths (h = 1 to h = full story length)
are different across the story types. Imagined stories have higher average sequentiality than autobiographical stories, and retold stories more sequentiality than recalled stories.
(B) Stories about imagined events are shorter than autobiographical stories. (C) Proportion of realis events is higher in autobiographical stories than in imagined stories. (D)
Effect sizes: Percentage difference in parameter estimates (left) and R2 (right), reflecting the magnitude of difference in sequentiality, the total number of words (story length),
the topic-driven and contextual likelihoods of sentences (NLLT and NLLC ) and the proportion of realis across story types.

sentences (h = 1, ..., 9) to the full preceding history (h = full).
We use the story summaries written by the storytellers as
the topic T . We compare sequentiality to the topic-driven
likelihood of sentences, computed by conditioning the sen-
tences of stories only on the topic; we report the negative
log-likelihood of sentences, NLLT = − 1

|si| log pLM(si | T ). We
also compare to the fully contextual negative log-likelihood:
NLLC = − 1

|si| log pLM(si | T , s0:i−1).

Lexicon-centric measures. In addition to sequentiality, we
examined the events in narratives and employed several word-
based metrics to analyze narratives. The latter lexicon-centric
measures, include counts of the prevalence of realis event words,
i.e., non-hypothetical references to concrete events that took
place (e.g., “she tripped”) in contrast to hypothesized events
(e.g., “she feared tripping”, but she did not trip.). To find those
words, we used an automated tagger trained on an annotated
corpus of realis terms (16). We also noted average numbers
of words in stories falling in psychologically related categories
using the Linguistic Inquiry Word Count (LIWC; 30) lexicon,
and measured the average concreteness level of words using
a concreteness lexicon (31). To ensure the validity of the
concepts measured by these lexicon-based measures (37), we
show the most frequent words in each lexicon category along
with our results.

Results

Analysis of Hippocorpus stories. We determined the difference
in sequentiality across the three story types (recalled, retold,
and imagined stories) using a factorial linear regression with
the story type as the grouping factor and the story length. We
included the story length because recalled stories are longer
than retold stories (p = 0.001), and retold stories are longer
than imagined stories (p < 0.001; Fig. 2C). We report the R2,
which quantifies the proportion of variance in the data that
is explained by the group difference, the effect size, and the
p-values after correction for multiple comparisons using the
Bonferroni method.

Imagined stories flow in a more expected manner than autobiographi-
cal stories. The comparisons between the sequentiality across
story types (N = 6854 stories on N = 2788 unique topics)
show that imagined stories have higher sequentiality than au-
tobiographical memories (p < 0.001 for the main effect of the
story type on all sequentiality history lengths; see Fig.2 for
the effect sizes). The pairwise comparisons demonstrate that
imagined stories have higher sequentiality than both retold
(p < 0.001) and recalled (p < 0.001) stories. While there were
no differences in contextual likelihood (NLLC) between story
types, we observe lower topic-driven likelihood (i.e., higher
NLLT ) for sentences of imagined stories versus autobiographi-
cal stories. This suggests that the sentences of imagined stories
on average have weaker links to the topic than sentences of au-
tobiographical stories, despite both types of sentences having
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strong links to the preceding sentences. However, in general,
sequentiality (with increasing history size) has much larger
effect sizes and R2 compared to the likelihood or realis metrics
(Fig. 2D), which shows that sequentiality is a better measure
for capturing differences in the narratives of imagined and
autobiographical stories.

Retold autobiographical stories have higher sequentiality than fresh
recollections. In comparison to freshly recalled stories, stories re-
told after several months have higher sequentiality (p < 0.001),
are shorter (p < 0.001), and contain fewer realis events
(p < 0.001; Fig. 2). This finding demonstrates systematic
shifts in the narratives of autobiographical stories with time,
posing questions and framing future research on the consol-
idation of memories in and influences of such processes on
recollection. We found that participants’ assessments of the
frequency of recalling or retelling autobiographical stories is
not associated with sequentiality but that sequentiality is neg-
atively correlated with the number of realis events in stories
(r = −0.08, p < 0.001).

Autobiographical stories contain more realis events and concrete and
time-and-space words than imagined stories. We found that the
proportion of realis events is higher in recalled autobiographical
stories than in imagined stories (p = 0.001; Fig. 2B), but
did not differ when comparing recalled and retold (p > 0.1)
or retold and imagined (p > 0.1) stories. The proportion
of concrete words, measured with LIWC and concreteness
lexicons (31, 38), is different across story types (p < 0.001;
supplementary Tab. 1) with fewer concrete words being used
in imagined versus autobiographical stories (recall: p < 0.001;
retold: p < 0.001). The proportion of concrete words is
not different between recalled and retold stories (p > 0.1).
Additionally, we found that recalled and retold stories contain
greater proportions of words related to cognitive processes,
time, space, and motion (p < 0.001; supplementary Table. 1).

Event-annotated subset. Next, we review the differences in the
proportion of salient events in a subset of the Hippocorpus
that consists of 240 stories on 80 different topics across the
three story types. Each story sentence was annotated by eight
crowdworkers for whether a sentence expressed a major or
minor event, and whether the identified event was expected
versus surprising. To control for the variability in schematic
knowledge and subjective understanding of what constitutes
a major or minor event, the same groups of eight people an-
notated sentences from the three stories (imagined, recalled,
retold) on each topic. We summarized the annotations based
on majority voting and evaluated the difference in the propor-
tion of major and minor events in the stories across the three
story types using ANOVA including consideration of sentence
length (sentences with major events are significantly longer
than those with no events or with minor events; p < 0.001;
Fig. 4B). Then we studied the relationships among event an-
notation and sequentiality, LIWC, and concreteness lexicons
at the sentence level.

Autobiographical stories contain more salient events than imagined
stories. We observed a main effect for story type on minor
events and expected salient events, but not on major events
or surprising events (Fig. 3). Specifically, higher proportions
of sentences in recalled and retold stories were annotated as
minor events (p = 0.007) and expected events (p = 0.025)

Fig. 3. Proportions of salient event annotations across the stories. Graphs of the
mean and standard error of the mean of the proportion of events annotated as salient
(from left: major, minor, surprising, and expected events) in the imagined, recalled,
and retold stories. (* p < 0.05, ** p < 0.01)

as compared to events in imagined stories. We found no
significant difference in the number of minor, major, expected,
or surprising events (p > 0.1) between recalled stories and
their retold versions.

Sentences with salient events have lower sequentiality. We exam-
ined the effect of event type (major, minor, or no event) on the
sequentiality of sentences, similar to how we analyzed the effect
on story types. Sequentiality with any history length show
a significant main effect of event type (p < 0.001; Fig. 4A).
The sentences marked as containing major events have lower
sequentiality than those with no events (p < 0.001, all his-
tory lengths; no difference with the minor events, p > 0.1).
Whereas, sentences with minor events have lower sequential-
ity than sentences with no events (p < 0.05) only when the
sequentiality is measured considering the previous sentence (h
= 1) but not with longer history (h > 1, p > 0.1). The results
provide evidence that major events have more global influence
in a story than minor events.

Sentences with salient events have a higher proportions of realis
event terms and concrete, present-related, and space-related words.
We found a higher proportion of realis event terms in sentences
with minor events than in those with a major (p < 0.001)
or no events (p < 0.001; Fig. 4C). Using the LIWC and
concreteness lexicons, we generally observe more differences
between sentences with no event and those with a salient event,
compared to between sentences with a minor vs. major event
(see supplementary Table 2). Notably, in addition to lower
proportions of concrete and time-and-space words, we see
higher proportions of words related to cognitive and affective
processes in sentence with no events.

Sentences with surprising events have lower sequentiality than those
with expected major events. We found that major events are
often annotated as surprising (72%) rather than expected
(28%), whereas all minor events are annotated as expected.
Sentences annotated as describing major events have a lower
sequentiality when they are noted to be surprising versus
expected (p < 0.001). sequentiality is also lower for expected
major events compared to expected minor events (p < 0.001;
the difference increased with increasing history length). In
general, we found that sequentiality of sentences is not different
for surprising and expected sentences (p > 0.05; the difference
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Fig. 4. Sequentiality of sentences relative to event annotations. (A) The average
sequentiality, with varying history, is grouped by the event type. The sentences with
no event (none) follow the narrative flow of the story topics more than sentences with
major (all sequentiality history length) or minor events do (with sequentiality history
of one sentence). Sequentiality of minor and major events are not different. (B) The
sentences with no event are shorter than sentences with major events. (C) The realis
in sentences with major or minor events is higher than in sentences with no event.
Error bars show standard error of the mean.

decreased with increasing history length; for h = 1, uncorrected
p = 0.014), suggesting that sequentiality captures more than
the event expectancy.

Discussion

We introduced sequentiality as a new computational measure
of narrative flow of events instantiated by large-scale neural
language models. We used the measure to probe hypotheses
about the generative processes of constructing experienced ver-
sus imagined stories, paired via a matched topical description
starting point. Sequentiality measures the extent to which
story events and sentences flow from their preceding context
and overall story topic versus from only the story topic (Fig.
1), using likelihoods given by the GPT-3 large-scale language
model (23). As such, sequentiality can be considered a proxy
for quantifying how much a story follows the expected or
common narrative flow for a specific story topic (schematic
knowledge) versus is grounded in experiential details (episodic
memory).

We used sequentiality to study differences in narrative flow
across (1) recalled stories based on fresh autobiographical ex-
periences, (2) retold stories about those same autobiographical
experiences after three to six months, and (3) imagined stories
matched to the topics of the autobiographical stories. With se-
quentiality and word-based metrics such as the count of realis
event terms (that refer to concrete, non-hypothesized event
occurrences) and LIWC and concreteness lexicon scores, we
observed differences in episodic details and differing reliance on
schematic knowledge for constructing narratives. Based on se-
quentiality differences, imagined stories have greater alignment
with expected schematic flow of events than autobiographical
stories. Autobiographical stories contain more minor detailed
events than imagined stories (Fig. 3), and they tend to have
higher proportions of concrete words as well as words related
to time and space (supplementary Table 1). Below, we dis-
cuss implications of our findings for analyzing narrative flow
of events using large-scale neural LMs, as well as for under-
standing cognitive processes of storytelling with computational
methods.

Using sequentiality to quantify narrative flow. Sequentiality is
a novel measure to quantify the extent to which the flow of
events follows expected schema, using large-scale neural lan-
guage models. This is a departure from previous measures of

narrative flow, which have predominantly approached the task
by examining word usage, such as the rates of emotion-related
words over time. In prior work, researchers have argued that
emotional flow plays a role in the persuasiveness of stories (22),
an approach which was later operationalized through word-
counting of emotion words in books (27) and consumer reviews
(39). In addition to emotion words, recent work computed the
progression of the rate of function words and words related to
cognitive processes to study narrative progression and their
relationship to story quality (28). Beyond studying word fre-
quencies, a recent study (29) employed high-dimensional word
vectors to compute the speed and complexity of stories. In
contrast to previous work which analyzed narratives through
surface-level features, sequentiality leverages a story’s topic
and the language modeling capabilities of large-scale neural
LMs to infer the predictability of words. Sequentiality does
not rely on specific word categories or high-dimensional word
vectors. Sequentiality was initially used to measure the lin-
earity of sentences, in a preliminary investigation (40) where
we used a much smaller neural LM (GPT-1; 25) than the one
used in this study.

Conceptually, the sequentiality generative model provides
a new lens on how sentences and events are produced or read,
adding to several models of sentence and event processing from
cognitive science. Sequentiality relates to word-level surprisal
theory (41, 42), which posits that humans form expectations
of which word should come next in text, before observing it.
Contextual generative models can formalize those expectations
(e.g., Fig. 1; bottom), and neural LMs can approximate these
human expectations about words given sufficient context (43).

However, surprisal theory does not account for the variation
in non-contextual likelihood of events depending on the story
topic, which may play a role in how humans form expectations.
For example, a story about driving on a highway for 30 miles
might have fewer expected events than one about a birthday
party, which has opportunities for details on whose birthday
it was, where it took place, who attended, how the cake
tasted, etc. We account for this variation by conditioning
both the topic-driven and contextual models on the story
topic. Although we find no differences in contextual likelihood
(NLLC) and only small differences in topic-driven likelihoods
(NLLT ), the largest difference across story types is measured
as the ratio of contextual and topic-driven likelihoods using
sequentiality (Fig. 2D). Corroborating this need for comparing
likelihoods, recent work has shown the usefulness of comparing
contextual and non-contextual event likelihoods in a visual
event segmentation tasks (21).

Sequentiality is built on the assumption that large-scale
neural language models encode knowledge about the commonly
expected narrative flow of events. Previous work suggests that
this is a valid assumption, since LLMs can determine the
correct ordering of sentence in text (25, 44) and can be used
to generate expected schemas for events (35). However, the
extent to which LLMs learn the common flow of events is
influenced by the knowledge contained in their training data
(45). Specifically, the culture and identities of the authors
of training data can influence the schema that are deemed
likely by the model; a language model trained exclusively on
British text only will likely learn British-specific schema (e.g.,
tea time) that other models might not encode. However, our
findings with sequentiality remain similar when using language
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models trained on other data sets (24), such as OpenAI-GPT
(trained on 5GBs of English fiction; 25) and GPT-2 (trained
on 40GBs of news-like English text; 44), suggesting this may
not be a substantial issue.

Cognitive processes of recalling versus imagining. The results
reveal differences in the cognitive processes of how people
form narratives grounded in their own experiences versus
from their imagination, and the differential role of salient
events in both types of storytelling. Although imagination
and remembering may engage similar mental processes (46)
and imagination could leverage one’s own life experiences (47),
we found series of systematic differences between imagined
and autobiographical stories. In all stories, storytellers appear
to combine schematic knowledge with references to major
events. We found that major events tend to be relayed in
surprising sentences that tend to deviate from expectation,
per likelihoods provided by the neural language model. These
sentences are associated with the lowest sequentiality (Fig.
3 and Fig. 4), and they are often about personal concerns
and core drives and needs (supp. Table 2). For example,
in the recalled story on "A warm summer morning with a
hummingbird. How I had a communal moment with nature by
misting a hummingbird with a garden hose.", the major event
is that "At first, I thought he [the hummingbird] was just doing
his early morning pollen rituals, but to my surprise he wanted
water." In an imagined story on the same topic, the major
event is that "[animal started to come to the garden.] Mostly
squirrels at first and a few deer, and one tiny hummingbird."
Similarly in the recalled story, the major event is that "I saw
a hummingbird at the corner of my eye."

A significant difference between the autobiographical and
imagined stories is in the proportion of minor events, as iden-
tified through human annotations (Fig. 3). The minor events
tend to be non-hypothesized, concrete details of the stories
that are noted as expected but typically not part of the general
schema of the story topic. The minor events have local saliency
and can be identified only with computation of sequentiality
with a one sentence history. These events often contain words
on biological processes and social references. As an example,
a minor event in a recalled story on the same topic as the
example above is that "I was feeling kind of low due to not
seeing many of my friends anymore due to everyone being busy
with their schedule, and work being a little slow was also on
my mind." and in an imagined story was that "For the first
few weeks I got nothing and no activity, then about a month
ago animals came."

Shedding some new light on the nature of salient events,
we found that sentences annotated as describing salient events
tend to have more concrete words, first-person references, so-
cial words, and words related to cognitive processes, biological
processes, core drives and needs, and relativity to time, space,
and motion. Only a subset of these observations, including
the change in time, character, and space, has been previously
reported in studies on detection of salient events to mark an
event boundary (48). We also observed that the length of
stories showed small differences among the story types. This
observation on length is congruent with the understanding that
the stories that rely largely on commonly expected schema are
generally shorter (49, 50).

We found that the proportion of salient events (major and
minor) are similar in stories about freshly recalled memories

and about memories retold after 3–6 months (Fig. 3). The
retold stories have higher sequentiality and are shorter than
the initial recall of stories (Fig. 4). The self-reported frequency
of revisiting and retelling autobiographical stories does not
appear to influence the sequentiality of the stories. The retold
stories that were noted as more frequently revisited memories
were found to contain fewer realis events, which may reflect
processes of abstraction.The sequentiality measure provides
a means of quantifying the observation that, with passing
time and memory consolidation, retelling autobiographical
memories relies less on recall from episodic memory, instead
increasingly invokes common semantic knowledge of schema
(1, 10, 14), especially since certain events may be forgotten
(51).

Open research directions. The methods and results presented
show promise as tools for exploring processes of memory, rea-
soning, and imagination employed to generate narratives. The
methods also hold opportunity to help with building deeper
understandings of influences of common schema and personal
experiences on the stories that people tell. From a compu-
tational perspective, we see rich opportunities ahead for har-
nessing large-scale neural models to explore narrative theories,
including consideration and comparative study of different gen-
erative models (52). From a cognitive perspective, directions
include pursuing answers to standing questions about the con-
tributions of memory and reasoning to the stories that people
generate about experienced and imagined events, and how
memories—and the autobiographical stories that flow from
them—evolve over time since events are experienced. From a
cultural perspective, the methods can provide opportunity to
study differences across communities and cultures of the nature
and influences of common schema and personal experiences
on stories. Opportunities for study include seeking insights
about the influences and interpretations of world events over
time on fiction and non-fiction narrativizations (53, 54). Other
research directions include applying the results, methods, and
measures in studies of narrativizations with different motiva-
tions (55) such as recall, storytelling, persuasion, lie-detection,
false confessions, recovered memories, and the propagation
and effects of misinformation.

Materials and Methods

Building HIPPOCORPUS. In our analyses, we make use of our
previously collected corpus of autobiographical, imagined, and
retold stories (Hippocorpus; 24). This corpus contains 6,854
stories collected from crowdworkers in three stages (depicted
in Fig. 5). In the recalled stage, workers write a short diary-
like story and a short summary. Then, in the imagined stage,
workers are given a summary and asked to write a short diary-
like story. Finally, in the retold stage, workers from the first
stage are given their original summary and asked to re-tell
their story, after 3-6 months have passed. For both the recalled
and retold tasks, we collect from workers the time elapsed
since they experienced the event (timeSinceEvent, in weeks
or months), as well as the frequency at which they thought or
talked about the event (freqOfRecall, on a five-point Likert
scale of “never” to “constantly”). This study was undertaken
following approval from the Institutional Review Board (IRB)
at Microsoft Research. For more details, see our preliminary
work (24) and the Supplementary materials A.
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Collecting event annotations. We additionally collected
sentence-level event annotations for a subset of the Hippocor-
pus stories. We randomly selected 80 topics and their as-
sociated recalled-imagined-retold stories (N = 240 stories).
Since people’s individual perceptions of what constitutes an
expected, surprising, major, or minor event could differ de-
pending on their experiences, background, or culture, we make
sure all stories about the same topic are annotated by the same
worker. We collected event annotations from 8 crowdworkers
per set of three stories. This effort was also undertaken with
IRB approval and all crowdworkers had informed consent when
they chose to participate.

Participants read each of the sentences in each of the three
stories, one sentence at a time, and indicated if the story
sentences mark a start of a new event. Specifically, annotators
marked whether a sentence represented a new event that is
minor or major and if the events are expected or unexpected.
See Supplementary B for further details.

Extracting sequentiality, realis events, and lexicon counts.
To compute the sequentiality of each story sentence, we first
split each story in the Hippocorpus into sentences, using a
version of the NLTK sentence tokenizer∗ adapted to avoid
splitting sentences into one-word sentences. We then used the
OpenAI API to obtain the likelihoods under GPT-3 of each
sentence conditioned on the story topic and various history
sizes. Specifically, we compute the log-likelihood of a sentence
pGPT-3(si) by summing the word-level log-probabilities yielded
by the API for the sentence at hand. We can then compute
sequentiality for each history size.

For computing the proportions of realis event terms, we
use a realis term tagger from our preliminary investigations
(24). This tagger is a BERT (56) model trained on a realis
annotated corpus of literary fiction (16), which achieves F1
accuracy scores of 83.7% and 75.8%, on the validation and
test sets, respectively.

We used the LIWC 2015 software† for counting the propor-
tion of words that belong to specific LIWC categories (38). For
the concreteness lexicon (31), we averaged the concreteness
lexicon of each story by matching words in the story with
words in the lexicon.

Data analysis. For each story, we averaged the sequentiality
of all sentences and had one representative value for each
of the sequentiality with history length of 1 sentence to full
story. We also took the averaged proportion of major or minor
events, the averaged proportion of realis events, the total
number of words (story length), and the averaged negative log
likelihoods (NLLC, NLLT ) per story. We applied a factorial
linear regression on each of the parameters, to identify the
differences between story types. We either included three
factors for three story types (imagined, retold, recalled) or we
included two factors for pairwise comparisons.

We similarly used a factorial linear regression to evaluate
the characteristics of sentences with various event type (major,
minor, or no events). A sentence was accepted to be a minor
or major event if the majority of the annotators marked the
sentence as such. We also evaluated the proportion of events
that were expected or surprising by the majority of the anno-
tators. This analysis was done at the sentence level with 9412

∗https://www.nltk.org/api/nltk.tokenize.html
†https://www.liwc.app/

major, 6835 minor, and 17477 no event annotation. We used
Bonferroni correction to adjust the significance threshold for
multiple comparisons. All reported p-values are Bonferroni
corrected.
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Recalled 

Retold 

Imagined

Phase 1: Recalled stories (N=2,779)
Participants wrote a short story 
about an autobiographical event, 
wrote a 2-3 sentence summary

Phase 2: Imagined stories (N=2,756)
Participants were given a summary
from phase 1, wrote a short story 
imagining the event happened to them

Phase 3: Retold stories (N=1,319)
After 3-6 months, participants were given 
their original summary from phase 1, 
wrote a new story about the same event

Fig. 5. Data collection pipeline for constructing HIPPOCORPUS.

A. Further Data Collection Details

A. HIPPOCORPUS. The stories in Hippocorpus were collected from crowdworkers in three phases (see Figure 5). In phase one, a set of
crowdworkers wrote stories about memorable events they had experienced in the recent past (3-6 months) and summarized their story in
one to three sentences (N=2,779 recalled stories, written by 2662 authors‡). The summary of the story that was provided by the author
was used as the topic of the story. An example of a topic is: “My daughter and her husband announced the were expecting their second
child. While on a camping trip she feared that she might be having a miscarriage only to learn that she was having twins.”

In the second phase, we used the story topic after 3-6 month of writing the original memory, to ask a subset of the authors to retell
the autobiographical story (N=1,319 retold stories). In the third phase, we provided the story topics to another set of crowdworkers
and asked them to write imagined stories as if the event in the summary had happened to them (N=2,756 imagined stories, written by
N=1434 authors§). During the recalled and retold storywriting tasks, we also asked workers the time elapsed since they experience the
event (timeSinceEvent, in weeks or months), as well as the frequency at which they thought or talked about the event (freqOfRecall,
on a five-point Likert scale of “never” to “constantly”).

This study was approved by the Microsoft Research Institutional Review Board (IRB) and sought explicit informed consent from
participants. See http://aka.ms/hippocorpus for the data collection crowdsourcing templates.

B. Event annotations. To test the hypothesis that the sequentiality of narratives is associated with the number of events contained in
stories, we ran an annotation task and analyzed the number of events in a random selection of N = 240 stories of the Hippocorpus. The
subset consisted of a triple of imagination, recalled, and retold stories for each of 80 topics. In this subset, the autobiographical stories on
the same topic are written by the same person, to keep the author’s schematic knowledge of the topic constant. Also, each triple of story
types is annotated by the same participants (n = 8). Keeping the annotators within a topic constant allowed control of the variability in
schematic information and the individual difference in event segmentation (18, 57).

In the annotation task, participants when through three stories, one sentence at a time, and indicated if the story sentences mark a
start of a new event. We specifically asked the annotators to differentiate whether a new event is minor or major and, for 60 topics, we
additionally asked if events are expected or unexpected. Given that the saliency of events can vary (18), participants were instructed to use
their interpretation of what constitutes a major or minor event and if the events are expected or surprising. The order of the type of story
posed for annotation was randomized.

This data collection effort was also approved by the Microsoft Research IRB.

C. Participants. We recruited a diverse group of story authors. The participants’ age ranged between 18 and 55 years old (M = 33.6, SD
= 10.5) and were 47% male, 52% female, <1% non-binary, and <1% other. They were 73.7% White, 10.1% Black, 5.2% Asian, 6.1 %
Hispanic, 0.8% Native American, 0.7% Indian, 0.3% Middle Eastern, 0.2% Islander, 2.7% Other, and 0.7 % unidentified (this data has
previously been published in 24). 189 participants annotated events in a selection of stories (18-55 years old (M=37, SD=10.6); 53% men,
46% women, and 1% unidentified; 75.7% white, 6.3% Asian, 5.8% Black, 4.2% Hispanic, 0.5% Indian, 0.5% Native American, 5.3% other,
1.6% unidentified). All studies were conducted on Amazon Mechanical Turk. The procedures were approved by Microsoft’s ethical review
board. All participants gave written informed consent before participation and were compensated.

B. Lexicon-based narrative measures: results

To complement the sequentiality and realis analyses, we used several lexicon-based measures to investigate the stylistic and content
differences in imagined and autobiographical stories, as well as in sentences with minor, major, or no events. For each story or sentence,
LIWC lexicon scores are computed as the proportion of words in that story or sentence that appear in LIWC categories (38). For the
weighted concreteness lexicon (31), which contains a concreteness rating between 0–1 for 39,000 words, we compute a story’s or a sentence’s
concreteness score as the average rating per word in the story or sentence.

We list the LIWC and concreteness scores, comparing proportions in imagined, recalled, and retold stories (Table 1) and the proportions
in sentences with major, minor, or no events (Table 2).

As a way to verify the validity of these categories in our corpus (37), we list the top five most frequent words in our two corpora.
Additionally, we also compute the coverage of each category, i.e., the proportion of words in our corpora that belong to each category.

‡2550 of the authors wrote one autobiographical story, 107 wrote two stories, and 5 wrote three stories
§As participation in this task was not restricted, 1,072 wrote one story, 311 between two and five stories, and 30 between six and ten stories, and 21 workers more than ten stories (following a Zipfian

distribution between 11 and 92).
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Variable Recalled retold Imagined
p-values

Coverage (%) Top words
RrI Rr rI RI

Concreteness 0.321 0.322 0.317 * ‡ † 87.1 the, to, and, a, was
Function words 9.140 9.132 8.157 * + ‡ † 58.6 i, the, to, and, a

Total pronouns 2.860 2.841 2.660 18.6 i, my, it, that, we
Personal pronouns 2.049 2.020 1.914 13.4 i, my, we, me, he

1st pers singular 1.172 1.109 1.122 7.6 i, my, me, i’m, myself
1st pers plural 0.310 0.334 0.277 * ‡ 2.0 we, our, us, we’ve, we’re
2nd person 0.033 0.030 0.034 0.2 you, your, you’re, yourself, you’ve
3rd pers singular 0.430 0.433 0.376 2.8 he, she, her, him, his
3rd pers plural 0.104 0.115 0.104 0.7 they, them, their*, themselves, they’d

Impersonal pronouns 0.810 0.820 0.745 5.2 it, that, this, what, thing*
Articles 1.082 1.073 0.910 * ‡ † 6.8 the, a, an
Prepositions 2.197 2.200 1.898 * + ‡ † 13.9 to, of, in, for, with
Auxiliary verbs 1.389 1.396 1.294 9.0 was, had, have, is, be
Common adverbs 0.884 0.905 0.837 * + 5.8 so, about, when, there, just
Conjunctions 1.098 1.084 0.926 * ‡ † 6.9 and, so, but, as, when
Negations 0.218 0.219 0.216 * † 1.5 not, didn’t, never, no, don’t

Grammar Other
Regular verbs 2.833 2.841 2.645 * + 18.5 was, had, have, is, be
Adjectives 0.775 0.772 0.702 * ‡ 5.0 as, after, more, few, new
Comparatives 0.376 0.377 0.333 2.4 as, like, after, more, before
Interrogatives 0.188 0.191 0.172 1.2 when, what, how, who, which
Numbers 0.148 0.128 0.121 * + † 0.9 one, first, two, three, once
Quantifiers 0.387 0.409 0.347 * + ‡ 2.5 all, some, more, much, few

Affect Words 0.796 0.792 0.776 5.2 good, well, great, happy, best
Positive emotion 0.527 0.537 0.529 3.5 good, well, great, happy, best
Negative emotion 0.258 0.244 0.236 1.7 bad, lost, pain, stress*, sad

Anxiety 0.063 0.061 0.055 0.4 stress*, nervous, worried, scared, struggl*
Anger 0.039 0.039 0.035 0.3 fight*, angry, attack*, frustrat*, kill*
Sadness 0.072 0.066 0.063 0.5 lost, sad, hurt*, alone, miss

Social Words 1.732 1.753 1.564 * ‡ 11.2 we, he, she, her, they
Family 0.214 0.219 0.186 1.4 family, husband*, wife*, daughter*, son
Friends 0.074 0.068 0.071 0.5 friends, friend, guy*, girlfriend*, boyfriend*
Female referents 0.291 0.287 0.250 1.9 she, her, wife*, daughter*, sister*
Male referents 0.307 0.317 0.271 2.0 he, him, his, husband*, son

Cognitive Processes 1.635 1.670 1.592 * + † 10.9 but, all, not, would, some
Insight 0.349 0.349 0.347 * † 2.3 know, felt, think, decided, feel
Cause 0.213 0.215 0.186 1.4 because, how, made, since, make
Discrepancies 0.212 0.219 0.227 * ‡ † 1.5 would, could, if, wanted, want
Tentativeness 0.323 0.339 0.315 * + † 2.2 some, or, if, lot, something*
Certainty 0.240 0.238 0.241 * † 1.6 all, never, always, everyone*, everything*
Differentiation 0.411 0.428 0.392 * + † 2.7 but, not, really, or, didn’t

Perceptual Processes 0.383 0.377 0.348 2.5 see, felt, said, feel, experienc*
Seeing 0.155 0.158 0.141 1.0 see, saw, looked, looking, beautiful
Hearing 0.083 0.080 0.077 0.5 said, say, phone*, laugh*, heard
Feeling 0.118 0.111 0.107 0.8 felt, feel, hard, feeling, pain

Biological Processes 0.353 0.343 0.314 2.3 life, love, food*, hospital*, doctor*
Body 0.083 0.073 0.068 0.5 eye*, heart, head, face, sleep
Health/illness 0.158 0.150 0.132 1.0 life, hospital*, doctor*, live, pain
Sexuality 0.008 0.006 0.007 0.0 pregnan*, passion*, sex, breast*, sexual*
Ingesting 0.094 0.101 0.093 0.6 food*, drink*, dinner*, water, restau*

Core Drives and Needs 1.441 1.458 1.315 * ‡ 9.3 we, up, our, get, got
Affiliation 0.645 0.659 0.582 * 4.1 we, our, family, us, friends
Achievement 0.247 0.248 0.222 1.6 first, work, able, best, better
Power 0.324 0.315 0.287 2.1 up, over, down, best, help
Reward focus 0.275 0.279 0.274 1.8 get, got, good, took, great
Risk/prevention focus 0.064 0.067 0.063 0.4 bad, problem*, stop, wrong, difficult

Time orientation
Past focus 1.486 1.422 1.289 * ‡ † 9.4 was, had, were, been, got
Present focus 1.034 1.080 1.072 * + † 7.0 have, is, be, get, do
Future focus 0.163 0.166 0.165 1.1 will, going, then, hope, expect*

Relativity 2.657 2.601 2.271 * ‡ † 16.8 in, on, at, time*, up
Motion 0.456 0.456 0.383 * ‡ † 2.9 went, go, going, came, car
Space 1.096 1.110 0.944 * + ‡ † 7.0 in, on, at, up, out
Time 1.171 1.103 0.998 * ‡ † 7.3 time*, day*, when, after, month*

Personal Concerns
Work 0.290 0.288 0.256 1.8 work, job*, school, doctor*, pay*
Leisure 0.229 0.231 0.207 1.5 family, fun, party*, game*, drink*
Home 0.134 0.130 0.114 0.8 family, home, house, room, door*
Money 0.104 0.110 0.093 0.7 money*, spent, pay*, spend, store
Religion 0.020 0.016 0.018 0.1 god, church*, bless*, spirit*, christmas*
Death 0.022 0.023 0.017 0.1 died, death*, funer*, kill*, dead

Informal Speech 0.051 0.050 0.050 0.3 well, anyway*, cool, okay, yes
Swear words 0.005 0.005 0.006 0.0 freak*, hell, crap, shit*, damn*
Netspeak 0.004 0.004 0.004 0.0 gonna, app, kinda, lol, o
Assent 0.014 0.013 0.015 0.1 cool, okay, yes, absolutely, ok
Nonfluencies 0.023 0.023 0.020 0.1 well, oh, er, sigh, ugh
Fillers 0.003 0.003 0.004 0.0 anyway*, blah, rr*, dunno, y’kn*

Table 1. Average lexicon scores for the three story types in HIPPOCORPUS (recalled (R), retold (r), and imagined (I)), along with significance
values of the three-way and pairwise differences. The ∗,+,†,‡ symbols denote p-values <0.05 after Bonferroni correction. “Coverage” indicates
the percentage of the total number of words in the HIPPOCORPUS that are in the lexicon category (“Variable”), with the five most common
words listed under “Top words”. We bold variables with significant three-way differences.
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Variable Major minor noEvent
p-values

Coverage (%) Top words
Mmn Mm mn Mn

Concreteness 0.333 0.338 0.311 * ‡ † 86.8 the, to, and, was, a
Function words 8.725 7.652 8.144 * ‡ † 58.7 i, the, to, and, was

Total pronouns 2.776 2.421 2.647 * † 18.9 i, my, it, that, we
Personal pronouns 2.102 1.935 1.787 13.4 i, my, we, me, her

1st pers singular 1.263 1.084 1.042 7.9 i, my, me, i’m, myself
1st pers plural 0.248 0.382 0.241 * + ‡ 1.8 we, our, us, we’ve, we’d
2nd person 0.024 0.006 0.038 0.2 you, your, you’re, yourself, you’ve
3rd pers singular 0.480 0.362 0.350 2.8 her, she, he, him, his
3rd pers plural 0.087 0.101 0.116 † 0.8 they, them, their*, themselves, they’ve

Impersonal pronouns 0.673 0.486 0.860 * ‡ † 5.5 it, that, this, thing*, what
Articles 1.100 1.107 0.837 * ‡ † 6.6 the, a, an
Prepositions 2.231 2.056 1.785 * ‡ † 13.7 to, of, in, for, with
Auxiliary verbs 1.216 0.874 1.401 * + ‡ † 9.3 was, had, have, is, were
Common adverbs 0.779 0.615 0.887 * ‡ † 5.9 so, about, when, just, there
Conjunctions 0.952 0.958 0.974 * † 6.9 and, so, but, as, when
Negations 0.178 0.051 0.244 * + ‡ † 1.5 not, didn’t, never, no, wasn’t

Grammar Other
Regular verbs 2.673 2.272 2.645 * ‡ † 18.6 was, had, have, is, were
Adjectives 0.722 0.587 0.715 5.0 as, after, more, great, happy
Comparatives 0.361 0.239 0.349 2.4 as, like, after, more, before
Interrogatives 0.197 0.149 0.168 1.2 when, what, how, who, where
Numbers 0.198 0.087 0.098 * + † 0.9 one, first, two, three, once
Quantifiers 0.298 0.343 0.342 * † 2.4 all, some, more, much, few

Affect Words 0.647 0.559 0.824 * ‡ † 5.3 good, great, well, happy, love
Positive emotion 0.408 0.458 0.601 * † 3.8 good, great, happy, well, love
Negative emotion 0.227 0.101 0.213 ‡ 1.5 bad, pain, sad, problem*, miss

Anxiety 0.032 0.031 0.057 † 0.3 upset, worried, nervous, stress*, struggl*
Anger 0.046 0.011 0.028 0.2 frustrat*, kill*, cheat*, fight*, argu*
Sadness 0.058 0.042 0.064 0.4 sad, miss, tears, alone, lost

Social Words 1.816 1.702 1.462 * 11.2 we, her, she, he, they
Family 0.330 0.230 0.178 * † 1.6 family, son, parent*, daughter*, husband*
Friends 0.090 0.087 0.054 † 0.5 friend, friends, boyfriend*, guy*, girlfriend*
Female referents 0.398 0.256 0.228 * † 2.0 her, she, daughter*, wife*, sister*
Male referents 0.326 0.261 0.235 1.9 he, him, his, son, husband*

Cognitive Processes 1.319 0.910 1.665 * ‡ † 10.7 but, all, not, would, some
Insight 0.293 0.197 0.339 * ‡ † 2.2 know, think, felt, feel, decided
Cause 0.165 0.129 0.198 * † 1.3 how, because, made, make, since
Discrepancies 0.163 0.126 0.239 * ‡ † 1.5 would, could, wanted, if, want
Tentativeness 0.235 0.222 0.321 * † 2.1 some, or, if, lot, something*
Certainty 0.162 0.132 0.254 * ‡ † 1.5 all, never, everyone*, always, everything*
Differentiation 0.359 0.146 0.430 * + ‡ † 2.7 but, not, really, didn’t, other

Perceptual Processes 0.386 0.382 0.357 2.6 see, felt, said, feel, eye*
Seeing 0.180 0.216 0.170 1.3 see, eye*, looked, saw, seen
Hearing 0.102 0.101 0.061 0.5 said, say, phone*, laugh*, hear
Feeling 0.089 0.059 0.101 0.7 felt, feel, hard, pain, feeling

Biological Processes 0.416 0.385 0.285 * † 2.3 life, eye*, love, food*, doctor*
Body 0.112 0.053 0.057 * † 0.5 eye*, head, knee*, face, heart
Health/illness 0.180 0.093 0.125 1.0 life, doctor*, live, surger*, pain
Sexuality 0.019 0.000 0.006 * † 0.1 pregnan*, prostat*, passion*, virgin*, screw*
Ingesting 0.112 0.222 0.078 * + ‡ 0.7 food*, dinner*, cake*, water, restau*

Core Drives and Needs 1.454 1.475 1.225 * ‡ 9.3 we, up, our, family, got
Affiliation 0.666 0.792 0.545 * ‡ 4.3 we, our, family, us, together
Achievement 0.268 0.174 0.209 1.6 first, able, work, best, proud
Power 0.334 0.323 0.275 2.1 up, over, down, help, best
Reward focus 0.257 0.244 0.255 1.8 got, get, good, great, took
Risk/prevention focus 0.055 0.022 0.052 0.4 bad, problem*, stop, wrong, stopped

Time orientation
Past focus 1.683 1.354 1.210 * † 9.6 was, had, were, been, got
Present focus 0.784 0.598 1.155 * ‡ † 7.1 have, is, be, get, go
Future focus 0.132 0.104 0.174 * † 1.1 going, will, then, expect*, hope

Relativity 2.909 2.306 2.069 * † 16.5 in, on, time*, at, out
Motion 0.504 0.500 0.357 * ‡ † 2.9 went, go, going, came, trip
Space 1.177 1.051 0.865 * ‡ † 6.9 in, on, at, out, up
Time 1.292 0.812 0.905 * + † 7.1 time*, when, day*, after, month*

Personal Concerns
Work 0.319 0.219 0.216 1.7 work, job*, graduat*, school, doctor*
Leisure 0.237 0.348 0.180 * + ‡ 1.5 family, fun, party*, celebrat*, garden*
Home 0.145 0.180 0.097 * ‡ 0.8 family, home, house, garden*, room
Money 0.104 0.160 0.069 * ‡ 0.6 spent, income*, money*, bought, spend
Religion 0.007 0.008 0.013 0.1 god, zion*, church*, ritual*, prayed
Death 0.031 0.014 0.012 † 0.1 death*, died, funer*, kill*, die

Informal Speech 0.045 0.039 0.053 0.4 well, okay, yes, anyway*, cool
Swear words 0.010 0.000 0.004 0.0 crap, freak*, hell, sucks, screw*
Netspeak 0.003 0.003 0.009 0.0 kinda, o, lil, ha, haha*
Assent 0.011 0.008 0.014 0.1 okay, yes, cool, awesome, absolutely
Nonfluencies 0.020 0.025 0.025 0.2 well, er, oh, ugh, sighed
Fillers 0.001 0.003 0.003 0.0 anyway*

Table 2. Average lexicon scores for the three event types (major (M), minor (m), and no event (n)) in the annotated subset, along with significance
values of the three-way and pairwise differences. The ∗,+,†,‡ symbols denote p-values <0.05 after Bonferroni correction. “Coverage” indicates
the percentage of the total number of words in the event-annotated sentences that are in the lexicon category (“Variable”), with the five most
common words listed under “Top words”. We bold variables with significant three-way differences.
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