Why (not) use AI? Analyzing People's Reasoning and Conditions for AI Acceptability

Jimin Mun¹, Wei Bin Au Yeong¹, Wesley Hanwen Deng¹, Jana Schaich Borg², Maarten Sap¹,

¹Carnegie Mellon University

²Duke University
jmun@andrew.cmu.edu, wauyeong@andrew.cmu.edu

Abstract

In recent years, there has been a growing recognition of the need to incorporate lay-people's input into the governance and acceptability assessment of AI usage. However, how and why people judge acceptability of different AI use cases remains under-explored, despite it being crucial towards understanding and addressing potential sources of disagreement. In this work, we investigate the demographic and reasoning factors that influence people's judgments about AI's development via a survey administered to demographically diverse participants (N=197). As a way to probe into these decision factors as well as inherent variations of perceptions across use cases, we consider ten distinct labor-replacement (e.g., Lawyer AI) and personal health (e.g., Digital Medical Advice AI) AI use cases. We explore the relationships between participants' judgments and their rationales such as reasoning approaches (cost-benefit reasoning vs. rule-based). Our empirical findings reveal a number of factors that influence acceptance. We find lower acceptance of labor-replacement usage over personal health, significant influence of demographics factors such as gender, employment, education, and AI literacy level, and prevalence of rule-based reasoning for unacceptable use cases. Moreover, we observe unified reasoning type (e.g., cost-benefit reasoning) leading to higher agreement. Based on these findings, we discuss the key implications towards understanding and mitigating disagreements on the acceptability of AI use cases to collaboratively build consensus.

1 Introduction

There is a growing call from the public and experts alike to regulate the development and integration of AI into society (Pistilli et al. 2023; McClain 2025). These efforts, as reflected in the EU AI Act (Parliament 2023), NIST AI Risk Management framework (of Standards and Technology 2023), and recent U.S. Executive Order (exe 2023), have resulted in discussions about whether certain AI use cases should be pursued at all. As these high-stakes decisions shape the future of AI, it is essential to equitably determine which AI use cases warrant pursuit despite potential harms, requiring diverse public and expert perspectives.

Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Furthermore, to mitigate potential disagreements, we must understand how individuals make such decisions.

One significant challenge when evaluating the acceptability and impact of AI use cases is that their effects can be simultaneously positive and negative, depending on the context of use, functionality, and broader societal implications (Mun et al. 2024). For instance, while educational AI can provide affordable and accessible personal tutor, it can, at the same time, lead to over-reliance of students and diminish the goal of education (Times 2024; Zhai, Wibowo, and Li 2024). Thus, as AI is applied across increasingly diverse domains, understanding how people make decisions about its use—especially when benefits and harms conflict—becomes critical for anticipating and addressing disagreements about specific use cases.

To tackle this challenge, we investigate the factors and reasoning that shape judgments of AI acceptability. First, we assess how judgments about the *acceptability of development and use* vary across different AI use cases,² and how they relate to scenario characteristics (**RQ1**). Second, we explore *personal factors influencing these judgments*, especially as they relate to demographic differences (Kingsley et al. 2024) (**RQ2**). Third, we analyze *reasoning strategies participants use when making judgments* about AI use cases, and how those strategies do or do not relate to the judgments that are ultimately made (**RQ3**).

To answer these questions, we develop a survey to collect judgments and reasoning processes of 197 demographically diverse participants with varying levels of experience with AI. We ask participants to report whether a certain AI use case should be developed or not, whether they would use such a system, and ask them to provide rationales for their judgment and conditions that would cause them to change their judgments (Figure 1). We perform a focused investigation of acceptability using ten AI use cases³ that we systematically select for different risk levels, spanning two highly-discussed domains with ongoing efforts to develop

¹We will release data upon acceptance.

²By use cases, we mean specific real-world scenarios or problems that an AI system is designed to address.

³We focus on text-based, non-embodied, digital systems, and while we do not specifically discuss the AI user and subject, in our use case description, we follow three of the five concepts used in EU AI Act to describe high risk use cases (Golpayegani, Pandit, and Lewis 2023): the domain, purpose, and capabilities.

such use cases: personal health and labor replacement (McClain 2025; Kelly 2025; Kolata 2024; Pierson et al. 2025; Rajpurkar et al. 2022; Lee 2024). To understand characteristics of AI use cases that might affect perceptions beyond category, we vary them by required entry-level education and EU AI risk level (Table 1).

We perform a multi-pronged analyses of people's rationales. Drawing from moral philosophy, we examine participants' answers using two reasoning patterns: cost-benefit reasoning, which assesses expected outcomes (e.g., "using AI for this task would save time"; akin to utilitarian reasoning), and rule-based reasoning, which evaluates the intrinsic values of the action itself (e.g., "having humans/AI perform this task would be inherently wrong"; akin to deontological reasoning) (Cushman 2013; Cheung, Maier, and Lieder 2024). We then analyze the moral frameworks participants apply, drawing on moral foundations theory (Graham et al. 2011, 2008), to identify the dimensions they prioritize in decision making. Finally, to understand conditions under which participants might flip there decisions, we employ three dimensions based on prior studies (Solaiman et al. 2023; Mun et al. 2024): functionality (system capabilities like performance, bias, and privacy), usage (context of system integration, such as supervision, misuse, or unintended use), and societal impact (effects on individuals, communities, and society, such as job loss and over-reliance).

Our empirical results show general higher acceptance of personal health use cases over labor-replacement. While participants' acceptability judgments decreased with increased entry-level education and risk for each category respectively, professional use cases display more variability and disagreements across judgments (RQ1). Acceptability significantly varied among demographic groups and levels of AI literacy, with lower acceptability observed particularly among nonmale participants and those familiar with AI ethics (RQ2). Finally, our results show varying distribution of reasoning types across acceptability decisions, with rule-based reasoning being associated with negative acceptance and unified reasoning types showing higher agreement. Further qualitative analysis revealed participants' normative assumptions about AI, humanness, and society—for example, viewing empathy as essential to humanness but lacking in AI (RQ3).

Our findings shed novel light onto the diversity of people's acceptability and reasoning of AI uses in distinct domains and risk levels. We conclude with a discussion highlighting three key implications for future researchers, practitioners, and policymakers working on advancing ethical and responsible AI development: first, diverse methodologies are needed to effectively analyze use cases and their characteristics; second, involving diverse stakeholders is crucial for assessing the acceptability of AI applications, particularly in workplaces; and third, further investigation into human reasoning processes about AI, notably rule-based reasoning, is needed to inform consensus-building in policy making.

2 Related Works

While there were many efforts towards ethical AI development and deployment by academics (Kieslich, Diakopoulos, and Helberger 2023; Bernstein et al. 2021; Lin et al. 2020),

industry (OpenAI 2022; Deng, Barocas, and Vaughan 2024), and government (The White House 2023), they have largely lacked diverse public inputs. To address this gap, many works from both academia and civil society have sought to meaningfully engaging lay people in assessing the impact of specific AI use cases. Prior works have focused on anticipating harms (Buçinca et al. 2023) and impacts (Kieslich, Diakopoulos, and Helberger 2023; ada 2023) through participatory foresight, uncovering diverse, sometimes diverging, viewpoints about AI biases and values (Kingsley et al. 2024; Jakesch et al. 2022; Kapania et al. 2022), and governance efforts of AI (Zhang and Dafoe 2020). However, to the best of our knowledge, only Mun et al. considered development decisions by diverse lay-users with an option of not developing a use cases. Among other findings, these prior works from AIES and broader Responsible AI venues revealed a substantial amount of variations in perceptions primarily among demographic lines (e.g., gender, race, political leaning) regarding the desired behavior of AI.

However, little attention has been given to identifying reasoning of participants over AI use cases. While some works have identified decision variations under ambiguous ethical implications of decisions made by AI for certain tasks (e.g., self driving cars (Awad et al. 2018), medical AI (Chen et al. 2023), predictive analysis (Barocas and Selbst 2016)) and inherent value conflicts (Jakesch et al. 2022), these works have not focused on self-reported reasoning. Thus, our work addresses gap by closely examining the **detailed, self-reported reasoning processes of lay people** regarding the acceptability of AI use cases without explicitly guiding towards outcome-based (i.e., utilitarian) or value-based (i.e., deontological) reasoning, allowing participants to freely choose and express their deliberation process.

3 Study Design and Data Collection

To answer our research questions on how and why people judge AI use cases as acceptable, we conducted a survey-based study with demographically diverse participants. In this section, we discuss the selection of use cases (§ 3.1), survey design (§ 3.2), and data collection details and participant demographics (§ 3.3).

3.1 Use Cases

To answer RQ1 which examines the impact of different characteristics AI use cases on judgments and decision making processes, we carefully crafted ten different AI use cases as vignettes. We first chose two broad application categories frequently mentioned by the public in previous works (Kieslich, Helberger, and Diakopoulos 2024; Mun et al. 2024): AI in labor-replacement where AI takes on a role in society thus far done by a human as a profession (e.g., Lawyer AI), and AI in personal health, where participants could uniformly consider themselves as AI users. We systematically developed five use cases for each category, varying by required education level for labor-replacement applications and by EU AI Act-assigned risk level for personal health applications.

Figure 1: Five professional or personal use cases are presented in a random order. For each use case, we ask multiple-choice questions about its development and confidence levels (Q1, Q2), free-text questions on rationale and decision-switching conditions (Q3, Q4), and multiple-choice questions on usage and confidence (Q5, Q6). These are followed by questions on AI literacy and demographics.

Use Case	Factor	Description
Labor-replacement Use		
Lawyer	Doctoral/Prof	Digital legal advice
Elementary Teacher	Bachelor	Teaches elementary students
IT Support	Some college	Maintains networks; tech support
Eligibility Interviewer	High school	Determines benefit eligibility
Telemarketer	None	Calls to sell/solicit
Peronal Health Use		
Digital Medical Advice	High Risk	Medical advice pre-consultation
Lifestyle Coach	High/Limited	Personalized wellness advice
Health Research	Limited	Summarizes personal health info
Nutrition Optimizer	Lim./Low	Personalized meal/nutrition tips
Flavorful Swaps	Low	Suggests healthy food alternatives

Table 1: Study use cases by category. Descriptions are abbreviated. See Appendix A.2 for full descriptions.

Labor-replacement Use Case Scenarios For the first area of focus, AI in labor replacement, we collected jobs listed in the U.S. census bureau⁴ and sorted them according to entry level education required as stated in the census. We chose education level as it has been tightly linked to socioe-conomic and occupational status (Svensson 2006; Evetts 2006). We selected jobs that have a large portion of digital or intellectual components with minimal requirement for embodiment resulting in following five professional roles: Lawyer, Elementary school teacher, IT support specialist, Government support eligibility interviewer, and Telemarketer. See Table 1 for further details.

Personal Health Use Case Scenarios To understand the acceptability of different health applications in personal and private life, we drew from use cases written by participants from prior works (Mun et al. 2024; Kieslich, Helberger, and Diakopoulos 2024) to systematically craft use cases which varied by risk levels according to EU AI Act. We ensured accurate reflection of the risk levels through iterative refinement of descriptions and agreement with categories assigned by GPT-4, following Herdel et al.. See Table 1 for further details.

3.2 Survey Design

Our survey presents participants with five use case descriptions in random order, all from randomly assigned category,

labor-replacement or personal health (see § 3.1 for details). After each description, participants answer: "Do you think a technology like this should be developed?" (Q1) and then, "How confident are you in your above answer?" (Q2). To allow for examining of their reasoning, participants then provide open-text rationales by finishing the sentence, "[Use Case] should [not] be developed because..." (Q3), adjusted dynamically depending on their answer to Q1. Participants also described that they would switch their opinion on acceptability of development of the use case: however, "[Use Case] should [not] be developed if..." (Q4; also dynamically rephrased based on Q1 answer). Subsequently, they answer, "If [Use Case] existed, would you use its service?" (Q5) and express confidence with, "How confident are you in your above answer?" (Q6). Refer to Table 6 in the Appendix for the exact wording of the questions.

Collecting Participant Characteristics Following the main survey, we asked participants questions about their AI literacy level and demographics to explore various factors affecting perception of AI acceptance (RO2). We adopted a shortened version of AI literacy questionnaires from previous works (Wang, Rau, and Yuan 2023; Mun et al. 2024) with four AI literacy aspects, AI awareness, usage, evaluation, and ethics, and two additional questions for generative AI, usage frequency and familiarity with limitations. We collected demographic information of the participants such as race, gender, age, sexual orientation, religion, employment status, income, and level of education; see Appendix 7 for detailed list of questions. Additionally, we collected information about discrimination chronicity, i.e., prolonged experiences of everyday discrimination, of their discrimination experiences (if any) following Kingsley et al..

3.3 Data Collection and Participant Demographics

We used Prolific⁵ to recruit participants. To represent diverse sample, we stratified our recruitment by the ethnicity categories (White, Mixed, Asian, Black, and Other) and age (18-48, 49-100) as provided by Prolific. We also added criteria for quality such as survey approval rating and number of previous surveys completed. Our study was approved by IRB at

⁴https://www.bls.gov/ooh/occupation-finder.htm

⁵https://www.prolific.com

our institutions, and we paid 12 USD/hour. Our final sample consisted of 197 participants across two categories, with professional usage assigned to 100 participants and personal to 97. See Appendix A.3 for further details on participants.

4 Acceptability & Reasoning Analysis Methods

Our surveys consisted of both multiple choice (numerical) and open-text questions designed to answer our research questions. In this section, we detail our process for numerical (§ 4.1) and open-text (§ 4.2) analysis.

4.1 Multiple Choice Analysis

We analyzed the judgment and confidence ratings by mapping judgment (Q1, Q5) to 1 ("Should be developed", "Would use") or -1 ("Should not be developed", "Would not use") and confidence (Q2, Q6) to a scale from 1 to 5. We used numerically converted judgment, confidence, and combined (judgment×confidence: -5 to 5) values as dependent variables in our analysis. We used repeated-measures ANOVAs to understand the differences in mean responses between conditions/groups and linear mixed effects regression models (lmer) to better understand the effects of specific factors. We included a subject-specific random effect when using ANOVA and regression models and added a usecase-specific random effect when applicable. We factorized demographic responses for analysis with the exception of discrimination chronicity, which we aggregated to a numerical value (Kingsley et al. 2024; Michaels et al. 2019). We also converted responses to AI literacy questions to numerical values for analysis.

4.2 Open-response Analysis

Background: Moral Decision Making To understand decision-making in AI use cases, we draw on moral psychology and dual system theory. We examine two decision-making systems: cost-benefit reasoning, which assesses outcomes and consequences, and rule-based reasoning, focusing on norms, rules, and virtues (Cushman 2013; Cheung, Maier, and Lieder 2024). These correspond to utilitarian reasoning (maximizing good) and deontological reasoning (adhering to moral duties and rights), respectively. Additionally, we apply moral foundations theory (Graham et al. 2008) to identify values and potential moral conflicts in AI development.

To assess the reasoning methods used by the participants, we analyzed the open-text responses on elaborations to their decisions (Q3) and circumstances in which their decisions would switch (Q4) along the following three dimensions: reasoning types (cost-benefit, rule-based, both, unclear), reference to moral foundations⁶ (Care, Fairness, Purity, Authority, Loyalty), and switching conditions (Functionality,

Usage, Societal Impact). By analyzing reasoning types and moral values reflected in the participants' justifications, we aim to characterize *how* participants made their decisions, and by analyzing various factors such as primary concerns in switching condition, we aim to discover *what* aspects were salient for the participants in their decisions.

Classification and Aggregation We classified participants' responses to Q3 (elaboration of judgment) and Q4 (conditions for switching decisions), totaling 985 samples for each question, using OpenAI's gpt-407. To validate the model's classification performance, results were compared with a reference set of 100 samples annotated by three independent annotators, comprised by members of the research team and a professional annotator. Initially, each annotator independently assessed the data, and then consensus was reached through discussion to establish a gold standard set. The inter-rater agreement between the gold standard and o1-mini's annotations was evaluated using Gwet's AC1 metric, chosen for its robustness with infrequent labels (Wongpakaran et al. 2013). While the agreement levels varied, ranging from almost perfect to moderate (0.98-0.57), all dimensions had above substantial agreement except Societal Impact. Annotations for cost-benefit reasoning, rule-based reasoning, and authority reached near-perfect agreement. Due to minimal occurrences in both human and LLM annotations, the moral foundation dimension Loyalty was excluded from further analysis. The annotations were conducted based on presence or absence of the values and were converted into binary format for statistical analysis. See Appendix C for further details on agreement and automatic annotation settings.

5 Findings

Our work aims to uncover variations in acceptability of AI use cases and factors and reasoning processes that underlie these judgments. In this section, we discuss our findings about the judgments of the AI use cases (§5.1), personal factors that may influence the decision such as demographics and AI literacy (§5.2), and factors in rationales that could uncover reasoning processes that lead to judgments (§5.3).

5.1 RQ1. Use Case Perceptions & Disagreements

In our analysis, we investigated the effects of use cases on participants' judgments using our ten use case vignettes. Overall, acceptability statistically differed among the two categories ($t_{\rm DEV}(983) = -9.05, p < .001$; $t_{\rm USAGE}(983) = -5.50, p < .001$). Notably, personal health use cases had higher acceptability ($M_{\rm DEV} = 0.68, SD_{\rm DEV} = 0.74$; $M_{\rm USAGE} = 0.51, SD_{\rm USAGE} = 0.86$) than labor-replacement use cases ($M_{\rm DEV} = 0.18, SD_{\rm DEV} = 0.99$; $M_{\rm USAGE} = 0.18, SD_{\rm USAGE} = 0.98$). See Figure 7 in Appendix B for additional category comparison results.

Labor-replacement Use Cases Exploring specific use cases within the labor-replacement category (Figure 2), we observed that Elementary School

⁶We used the five foundational dimensions: Care, Fairness, Loyalty, Authority, and Purity. Although these dimensions have been updated to encompass a broader range of values beyond WEIRD (White, Educated, Industrialized, Rich, and Democratic) populations (Atari et al. 2023), we selected this version for survey brevity.

⁷gpt-4o-2024-11-20

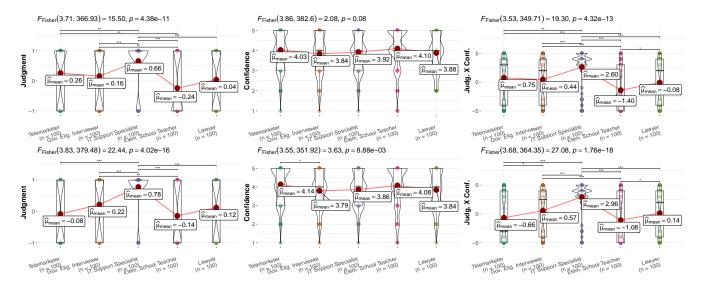


Figure 2: Labor-replacement use case means and distributions of numerically converted Judgment, Confidence, and Judgment×Confidence. First row shows results for development decisions (Q1, Q2) and second row shows results for usage decisions (Q5, Q6). ANOVA results for use cases are shown above each panel. Within subject test was performed using Student's t-test with Holm correction. * denotes following significant p-values: ***p < 0.001; **p < 0.01; *p < 0.05. Use case names were shortened.

Teacher AI ($M_{\rm DEV}=-0.24, SD_{\rm DEV}=0.98;$ $M_{\rm USAGE}=-0.14, SD_{\rm USAGE}=1.00)$ had the lowest acceptability for both types of judgments followed by Lawyer AI $(M_{DEV} = 0.04, SD_{DEV} = 1.00)$ and Telemarketer AI ($M_{USAGE} = -0.08, SD_{USAGE} = 1.00$) where their near zero mean suggest disagreement within judgments. Interestingly, IT Support Specialist AI had the highest acceptability ($M_{DEV} = 0.66, SD_{DEV} = 0.76$; $M_{\rm USAGE} = 0.78, SD_{\rm USAGE} = 0.63$) despite human replacement potential and median education level.

Personal Health Use Cases In personal health use scenarios, Digital Medical Advice AI ($M_{DEV} = 0.34, SD_{DEV} =$ $0.95; M_{USAGE} = 0.24, SD_{USAGE} = 0.98), reflecting$ high risk usage, consistently had lower acceptance across judgment types, compared to all other use cases. Nutrition Optimizer ($M_{DEV} = 0.86, SD_{DEV} = 0.92; M_{USAGE} =$ $0.69, SD_{\text{USAGE}} = 0.73$) had the highest mean acceptance across both acceptability judgments. Interestingly, unlike the labor-replacement use cases which had slightly higher acceptance for usage, personal use cases had lower acceptance for usage in general compared to development.

Use Case Variations When selecting use cases, we used two underlying variations: entry level of education required for labor-replacement use cases and EU AI risk levels for personal health. As risk levels and required education increased, we observe consistent negative effects on judgments, with personal health use cases showing stronger effects ($\beta_{\mathrm{DEV}} = -0.11, p < .001; \, \beta_{\mathrm{USAGE}} = -0.10, p < .001; \,$.001) compared to labor-replacement scenarios (β_{DEV} = -0.08, p < .01), where only development judgments were significantly associated. Confidence ratings showed a small but significant decrease with increasing risk levels in per-

	DEV $(\beta(SE))$		USAGE $(eta(SE))$	
	Judg.	Conf.	Judg.	Conf.
Labor-	replacement			
Coeff.	-0.08**(0.03)	-0.00(0.02)	0.00(0.03)	-0.03(0.03)
β_0	$0.43^{***}(0.10)$	$3.97^{***}(0.10)$	0.17(0.10)	$4.04^{***}(0.10)$
Persona	al Health			

Coeff. $-0.11^{***}(0.02) -0.08^{***}(0.02) -0.10^{***}(0.02) -0.09^{***}(0.02)$ $1.02^{***}(0.08)$ $4.20^{***}(0.10)$ $0.80^{***}(0.09)$ $4.05^{***}(0.11)$ ***p < 0.001; **p < 0.01; *p < 0.05

Table 2: Mixed-effects models: use case factor effects (estimate; SE, β_0 denotes intercept) for judgment and confidence, split by labor-replacement/personal health. Use case variations are numerically coded from 1 (lowest risk/education) to 5 (highest risk/education). Bold indicates p < 0.05.

sonal health use cases ($\beta_{DEV} = -0.08, p < .001$; $\beta_{\text{USAGE}} = -0.09, p < .001$), while labor-replacement use cases showed no significant impact on confidence.

Disagreements We compare the standard deviation of judgments weighted by confidence to understand possible disagreements and their strength among use cases. Interestingly, the use cases with four highest disagreements in both judgments were all labor-replacement uses in order of Telemarketer ($SD_{DEV} = 4.08$; $SD_{USAGE} = 4.21$), Elementary School Teacher ($SD_{DEV} = 3.99$; $SD_{USAGE} =$ 4.09), Lawyer ($SD_{DEV} = 4.00$; $SD_{USAGE} = 3.99$), and Government Eligibility Interviewer AI (SD_{DEV}) = 3.96; $SD_{\text{USAGE}} = 3.89$). These four use cases were followed by Digital Medical Advice AI $(SD_{DEV} = 3.80,$ $SD_{\rm USAGE}=3.83$). The use cases with the lowest disagree-

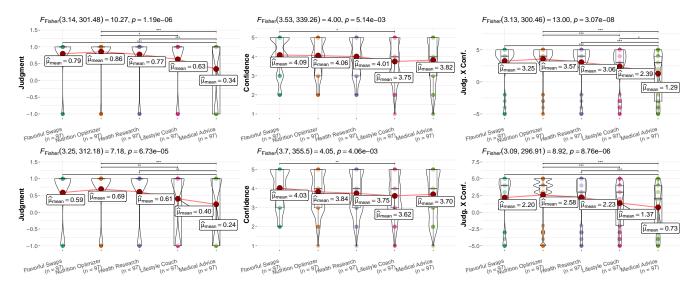


Figure 3: Personal health use case means and distributions of numerically converted Judgment, Confidence, and Judgment×Confidence. First row shows results for development decisions (Q1, Q2) and second row shows results for usage decisions (Q5, Q6). ANOVA results for use cases are shown above each panel. Within subject test was performed using Student's t-test with Holm correction. * denotes following significant p-values: ***p < 0.001; **p < 0.01; *p < 0.05. Use case names were shortened.

ments were surprisingly Nutrition Optimizer ($SD_{\rm DEV} = 2.16; SD_{\rm USAGE} = 3.03$) followed by IT Support Specialist AI ($SD_{\rm DEV} = 3.08; SD_{\rm USAGE} = 2.65$).

RQ1 Takeaways Our results show that there are significant variation in judgments based on use case characteristics such as category, EU-defined risk level, and, to some extent, required education level for labor-replacement cases. The uniquely negative response to the Elementary School Teacher AI highlights potential concerns specific to care work. High disagreement in labor-replacement scenarios underscores the need for cautious integration of AI into existing roles. In contrast, the consistent positive judgments for IT Support Specialist AI suggest that not all labor-replacement use cases are viewed equally, indicating the need for nuanced understandings of acceptability. We further examine this variability in § 5.3.

5.2 RQ2. Impact of Personal Factors on Acceptability Judgment

Demographic Factors As shown in Table 3, several demographic factors significantly influenced use case judgments.⁸ Across both categories of use cases, certain age groups were positively associated with confidence in usage: 25-34 ($\beta_{\text{USAGE}}=0.41,\ p<.05$) and 55-64 ($\beta_{\text{USAGE}}=0.48,\ p<.05$). Race also had notable influences; specifically, Asian participants exhibited significantly lower confidence in both development and usage judgments ($\beta_{\text{DEV}}=-0.37,\ p<.01;\ \beta_{\text{USAGE}}=-0.33,\ p<.05$), particularly in labor-replacement contexts.

Gender emerged as a crucial determinant, with non-male participants consistently showing negative judgments $(\beta_{\text{DEV}} = -0.29, p < .001; \beta_{\text{USAGE}} = -0.33, p < .001),$ indicating potential discrepancies in perception or experience with AI applications. Liberal views, especially among those identifying as strongly liberal, were associated with negative judgments across both categories of use cases $(\beta_{\text{DEV}} = -1.16, p < .05; \beta_{\text{USAGE}} = -1.51, p < .01),$ suggesting a skeptical stance towards AI's prevalence and role. Employment hours also contributed, with individuals working 40+ hours per week displaying a positive association with development ($\beta_{\rm DEV}=0.25,\,p<.05$), suggesting more exposure or reliance on AI use cases. High experience of discrimination chronicity was significantly related to lower acceptance of development ($\beta_{DEV} = -0.36$, p < .05). See Table 25 in the Appendix for ANOVA results.

AI Literacy We identified a correlation greater than 0.5 among three AI literacy aspects: awareness, usage, and evaluation. To avoid multicollinearity, we aggregated them into a single factor, AI Skills. As shown in Table 4, understanding of AI Ethics was associated with lower acceptability for both personal health ($\beta_{DEV} = -0.05, p < .001;$ $\beta_{\mathrm{USAGE}} = -0.23, \ p < .001$) and labor-replacement $(\beta_{\text{DEV}} = -0.04, p < .05)$. However, across both categories, high Generative AI Usage Frequency resulted in higher acceptance (Labor-replacement – $\beta_{DEV} = 0.14$, p < .01; $\beta_{\text{USAGE}} = 0.18, p < .001, \text{ Personal Health} - \beta_{\text{DEV}} =$ $0.15,\,p<.001;\,\beta_{\mathrm{USAGE}}\,=\,0.19,\,p<.001$). Notably, for personal health use cases, AI Skills was positively associated with confidence of judgments ($\beta_{DEV, USAGE} = 0.06$, p < .05), while Generative AI Limitation Familiarity was positively associated with confidence for labor-replacement

⁸Prior to analysis, we observed that the independent variables in the model had less than 0.5 correlation, except for age 65+ and Retired employment status.

		DEV (β (SE))			USAGE (β (SE))	
Demographics	Judg.	Conf.	Judg.×Conf.	Judg.	Conf.	Judg.×Conf.
(Intercept)	0.50 * (0.25)	4.08*** (0.32)	1.88 (1.09)	0.51 (0.28)	3.09*** (0.34)	1.34 (1.23)
$(Intercept)_{\texttt{Labor}}$	0.24(.38)	4.59*** (.49)	1.16 (1.66)	0.71(.41)	3.74 *** (.45)	3.09(1.74)
$(Intercept)_{\texttt{Pers}}$	0.66(.30)	3.76 *** (.47)	2.33(1.34)	0.25(.43)	2.61^{***} (.55)	-0.16(1.92)
Age						
25-34	-0.13(0.13)	0.04(0.19)	-0.59(0.58)	-0.22(0.16)	$0.41^* \ (0.20)$	-0.99(0.69)
55-64	-0.03(0.16)	0.32(0.23)	-0.14(0.69)	0.12(0.19)	0.48^* (0.24)	0.40(0.82)
$25-34_{ t Pers}$	-0.06 (.16)	0.36(.26)	-0.01(.70)	-0.14(.23)	0.76^* (.30)	-0.10(.103)
Race						
Asian	0.17(0.10)	-0.37^{**} (0.14)	0.73(0.44)	0.10(0.12)	-0.33*(0.15)	0.42(0.52)
Black	0.07(0.10)	0.24(0.14)	0.49(0.43)	0.07(0.12)	$0.32^* \ (0.15)$	0.53(0.51)
Mixed	0.19(0.13)	0.16(0.18)	0.85(0.56)	-0.13(0.15)	$0.43^* \ (0.19)$	-0.12(0.66)
$Asian_{Labor}$	0.40^{**} (.15)	-0.41^* (.20)	1.67^* (.65)	0.20(.16)	-0.44^* (.19)	0.59(.68)
Asian _{Pers}	0.01(.12)	-0.54^{**} (.20)	-0.05 (.56)	0.00(.18)	-0.37 (.24)	0.07(.82)
BlackPers	0.12(.12)	0.35(.20)	0.94(.55)	0.02(.18)	0.59^* (.23)	0.65(.80)
Gender						
Non-male	-0.29****(0.07)	-0.05(0.10)	-1.29****(0.32)	$-0.33^{***} (0.09)$	0.10(0.11)	-1.36**** (0.38)
$Non-male_{Labor}$	-0.48**** (.11)	0.03(.15)	-2.11^{***} (.48)	-0.52^{***} (.12)	0.06(.14)	-2.25***(.50)
Political View						
Str. liberal	-0.19(0.11)	-0.28(0.16)	-1.16*(0.49)	-0.34^* (0.13)	0.14(0.17)	-1.51**(0.59)
Str. Liberal $Labor$	-0.25 (.18)	0.02(.24)	-1.08(.76)	-0.42^* (.18)	0.58 ** (.22)	-1.63*(.79)
Str. Liberal _{Pers}	-0.15 (.16)	-0.53^* (.25)	-1.14(.70)	-0.18(.23)	-0.36(.30)	-1.01 (.102)
Liberal _{Pers}	-0.08(.11)	-0.52^{**} (.18)	-0.55 (.50)	-0.07(.17)	-0.39(.21)	-0.38(.74)
Education						
$Advanced_{Labor}$	0.43^{*} (.19)	-0.48(.26)	1.39(0.83)	0.31(0.20)	-0.40 (0.24)	1.03(0.87)
Employment						
40+ hrs	$0.25^* \ (0.11)$	0.07(0.16)	1.13*(0.51)	0.09(0.14)	0.01(0.17)	0.73(0.60)
Discrimination						
${\sf High}_{{\sf Labor}}$	-0.36^* (.18)	0.14 (.25)	-1.79*(.79)	-0.13(.19)	0.27(.23)	-0.39 (.82)

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 3: Coefficients, Standard Errors, and Significance of Demographic Factors. Models regress decision metrics on demographic factors, with random effects for subjects and use cases. Only significant factors are reported. The intercept represents the dominant demographic group (White, Christian, Male), the lowest natural ordering (18-24, Not Employed), and median values (Moderate, Associate's degree). Subscripts Labor and Pers indicate labor-replacement and personal health use cases.

		DEV (β (SE))			USAGE (β (SE))	
AI Literacy	Judg.	Conf.	Judg.×Conf.	Judg.	Conf.	Judg.×Conf.
Labor-replacement						
(Intercept)	0.07(0.30)	3.13 *** (0.33)	-0.49(1.27)	-0.50(0.32)	3.46 *** (0.34)	-2.44(1.35)
AI Ethics	-0.04*(0.02)	0.02(0.02)	-0.15(0.08)	-0.00(0.02)	-0.01(0.02)	-0.06(0.08)
Gen AI Usage Freq.	$0.14^{**} (0.04)$	-0.00(0.05)	$0.59^{**} (0.19)$	$0.18^{***} (0.05)$	-0.07(0.05)	0.80 *** (0.20)
Gen AI Limit. Familiarity	-0.09(0.07)	$0.20^* \ (0.08)$	-0.38(0.28)	-0.06(0.07)	$0.18^* \ (0.08)$	-0.38(0.30)
Personal Health						
(Intercept)	$0.87^{***} (0.22)$	$2.72^{***} (0.40)$	2.81 ** (1.00)	0.49(0.30)	2.44^{***} (0.45)	1.17(1.30)
AI Skills	0.00(0.01)	$0.06^* \ (0.02)$	0.07(0.06)	0.02(0.02)	$0.06^* \ (0.03)$	$0.15^* \ (0.08)$
AI Ethics	-0.05****(0.01)	0.01(0.03)	-0.23***(0.07)	-0.06**(0.02)	$0.07^* \ (0.03)$	-0.26**(0.09)
Gen AI Usage Freq.	$0.15^{***} (0.03)$	0.06(0.06)	$0.62^{***} (0.15)$	$0.19^{***} (0.05)$	-0.01(0.07)	0.79 *** (0.20)
Gen AI Limit. Familiarity	-0.06(0.05)	0.00(0.09)	-0.25(0.21)	-0.10(0.06)	-0.10(0.10)	-0.50(0.28)
*** $p < 0.001;$ ** $p < 0.01$	p < 0.05					

Table 4: Coefficients, Standard Errors, and Significance of AI Literacy Factors. Models regress decision metrics on AI literacy factors, with random effects for subjects and use cases. Only significant factors are reported.

usage ($\beta_{\rm DEV} = 0.20, \, p < .05; \, \beta_{\rm USAGE} = 0.18, \, p < .05$).

RQ2 Takeaways Our findings highlight the significant role of lived experiences and backgrounds, such as age, race, gender, political view, employment, and discrimina-

tion experience, in shaping perceptions and attitudes toward AI technologies. Moreover, our results indicate that different understandings of and experiences with AI can impact judgments of acceptability, corroborating previous findings (Kramer et al. 2018).

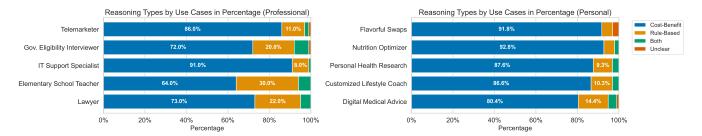


Figure 4: Percentage of reasoning types (cost-benefit and rule-based) by use cases in participant provided rationales (Q3, Q4).

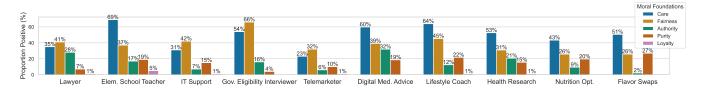


Figure 5: Proportion (%) of presence of moral foundations in participant's rationale responses (Q3, Q4) aggregated by use case.

		DEV (β (SE))			USAGE (β (SE))		
	Judg.	Conf.	Judg.×Conf.	Judg.	Conf.	Judg.×Conf.	
Reasoning Type							
Cost-benefit	0.32**(0.10)	0.15(0.15)	$1.31^{***} (0.39)$	$-0.10^* \ (0.04)$	$0.32^* \ (0.16)$	$2.40^{***} (0.52)$	
Rule-based	-0.46^{***} (0.09)	$0.43^{**} (0.14)$	-1.61^{***} (0.35)	-0.06(0.04)	0.25(0.14)	-0.88(0.48)	
Moral Value							
Care	0.05(0.04)	-0.06(0.06)	0.15(0.15)	-0.00(0.02)	$-0.15^* (0.06)$	-0.37(0.21)	
Fairness	$0.14^{***} (0.04)$	$-0.17^{**} (0.06)$	$0.53^{***} (0.16)$	0.00(0.02)	-0.08(0.07)	0.71**(0.22)	
Authority	$-0.20^{***} (0.05)$	-0.06(0.08)	-0.77^{***} (0.20)	-0.00(0.02)	-0.08(0.08)	-0.54(0.28)	
Switching Conditi	on						
Usage	$0.12^{***} (0.01)$	0.02(0.01)	$0.56^{***} (0.02)$	0.24^{***} (0.00)	-0.04****(0.01)		
Societal Impact	$-0.08 \; (0.04)$	0.00(0.07)	-0.39^* (0.17)	$0.03\ (0.02)$	$-0.12 \ (0.07)$	-0.74** (0.23	
(Intercept)	0.09 (0.11)	3.88*** (0.16)	0.18 (0.44)	0.16*** (0.04)	3.81*** (0.17)	-0.53 (0.64)	

Table 5: Coefficients (SE) and significance of rationale factors. All factors coded as binary. Only showing significant results.

5.3 RQ3. Factors in Participant Rationale

To deepen our analysis of use case acceptability, we examined open-text rationales (Q3) and decision-switching conditions (Q4) related to development judgments (Q1).

Decision-making Types As we defined in § 4.2, we focus on two distinct reasoning types for decision-making: costbenefit reasoning, which emphasizes outcomes (e.g., "it gives more people access to medical advice and treatment", P365), and rule-based reasoning, which reflects values inherent in the action itself (e.g., should not be developed because "human interaction is better", P249). As shown in Figure 4, generally, participants used more cost-benefit reasoning, especially for the IT Support Specialist (91.0%) and Nutrition Optimizer (92.8%) use cases. This result is particularly interesting as we observed these two use cases to have the lowest disagreement (see § 5.1), suggesting unified reasoning type may lead to more consistent judgments. On the other hand, rationales for Elementary School Teacher AI contained most percentage of rule-based reasoning (30.0%) followed by Lawyer AI (22.0%), both of which were the two use cases with lowest development acceptability.

Through further analysis of the influence of rationale factors on judgments using a mixed-effects model (Table 5), we found that use of cost-benefit reasoning in rationale is positively associated with development acceptability ($\beta_{\rm DEV}=0.32, p<.01$), while rule-based reasoning is negatively associated ($\beta_{\rm DEV}=-0.46, p<.001$). Interestingly, for usage, cost-benefit reasoning was negatively associated with acceptability ($\beta_{\rm USAGE}=-0.10, p<.05$) but positively for judgment weighted by confidence ($\beta_{\rm USAGE}=2.40, p<.001$). This suggests that, although cost-benefit considerations may reduce usage acceptance, they boost confidence when judgments are favorable.

The significant negative association of rule-based reasoning with judgments indicate that for certain contexts, the inherent action of using AI is viewed negatively. Participants cited diverse concerns related to AI itself (e.g., "because it would not have human sympathy", P16), human needs (e.g., "Humans need human interactions in order to learn properly", P44), societal impact (e.g., "Overreliance on AI ...", P132), and morality (e.g., "Having artificial intelligence try

and sell you things is immoral", P13). These results suggest that AI's acceptability heavily lies in its positive outcomes but can be outweighed by established rules.

Moral Foundations Beyond reasoning types, we explored moral foundations to provide insights into what values are relevant for AI use case decisions (Figure 5). For example, P12 responded that Elementary School Teacher AI use case should be developed because it "could give elementary schooling to children who are bed ridden...", which was annotated with both values of Care (focusing on the well-being and nurturing of bed-ridden children) and Fairness (focusing on fair access to education). Upon analysis, we observe that Care (i.e., dislike of pain of others, feelings of empathy and compassion toward others) was the most prevalent moral foundation in participants' rationales across the use cases in both categories (48%). Interestingly, Care could be invoked in both positive and negative regards for AI, as conveyed by P385 who noted that Customized Lifestyle Coach AI should be developed because "it may help improve some people's health" but would change their decision if "it caused harm to even one person."

Although Care was the most dominant moral foundation overall, Fairness emerged more prominently in context-specific evaluations such as Lawyer AI (41%) and Government Eligibility Interviewer AI (66%). These results could be due to the characteristics of the use cases, such as their main purpose and function; as noted by P88, Government Eligibility Interviewer should be developed because "it might be less biased and therefore more fair in it decisions (sic)". Authority was most apparent in participant rationales for Lawyer AI (28%) and Purity for Flavorful Swaps (27%). Moreover, Fairness in rationales had positive associations with acceptance ($\beta_{\rm DEV} = 0.53, p < .001, \beta_{\rm USAGE} = 0.71, p < .01$; judgment weighted by confidence; see Table 5).

Switching Conditions We further explored the flexibility of participants' judgments to understand possible mitigation of disagreements through criteria for switching their decisions (Figure 6). Functionality (53%; e.g., Medical Adivce AI should not be developed if it "consistently or had a high percentage of failure to diagnose correctly.", P373) was the most commonly noted condition for switching decisions in both directions (positive to negative and vice versa). This was followed by Usage (40%; e.g., Government Eligibility Interviewer should be developed if "it was only used to read and screen applications but not for making decisions"), Societal Impact (36%; e.g., Lawyer AI should not be developed if "it puts too many human lawyers out of work", P97), and Not Applicable (7%; e.g., will not change decision).

Interestingly, for labor-replacement use cases Societal Impact (45%) was more frequently mentioned as switching conditions followed by Functionality (43%), whereas Functionality (53%) was more frequently mentioned than Societal Impact (37%) for personal use cases. Frequency of Societal Impact in labor-replacement use cases could be closely linked to concerns of labor replacement: as described by P296, if Elementary School Teacher AI "was to replace teachers with the ai to save money", they would switch

their decision from positive to negative. Moreover, for all use cases except Elementary School Teacher AI, participants tended to switch from positive to negative decisions for lack of functionality reasons. In contrast, for Elementary School Teacher AI, the most common shift towards acceptability when the use case showed a positive societal impact (38%). As shown in Table 5, mentions of Societal Impact as conditions to switch decisions were more negatively associated with judgments ($\beta_{\text{DEV}} = -0.39, p < .05, \beta_{\text{USAGE}} = -0.74, p < .05; judgment × confidence). However, emphasis on Usage (<math>\beta_{\text{DEV}} = 0.12, p < .001$) as a condition to reverse their decisions was positively associated.

RQ3 Takeaways Reasoning types varied by context, with rule-based reasoning more common in contested use cases and negatively associated with acceptability, while costbenefit reasoning showed a positive association. The moral foundation of Care was especially salient, highlighting its importance in AI judgments. When explaining what might change their decisions, participants most frequently cited Functionality for personal health use cases and Societal Impact for labor-replacement, underscoring the context-dependent nature of these concerns, especially to be considered when mitigating disagreements.

6 Conclusion and Discussion

We conducted a study to understand how and why laypeople perceive various AI use cases as acceptable or not. To achieve this, we developed a survey that gathered judgments and reasoning processes from 197 participants who were demographically diverse and had varying levels of experience with AI. Participants were asked to provide their judgments on the acceptability of AI use cases, along with rationales for their decisions (e.g., "Should / Should not be developed, because...") and conditions that might change their decisions (e.g., "I would switch my decision if..."). The survey covered ten different AI use cases, spanning both personal and professional domains, and included varying levels of risk. Our findings revealed significant variation in the acceptability judgments and reasoning factors based on the domain, risk level, and participants' attributes, such as AI literacy and gender. We discuss the implications of these findings below.

Use Case Perceptions and Disagreements In our study, we explored the varying acceptability of AI across different use cases. Generally, acceptance was lower in scenarios with higher educational requirements and greater EU AI risk levels. Professional use cases displayed more variability, notably with Elementary School Teacher AI, which was uniquely unacceptable. This underscores the necessity for further research into how AI should be developed and integrated, as well as what skills it should have, particularly in fields where empathy and care are crucial (Wu et al. 2024; Kawakami et al. 2024; Borg and Read 2024). In addition, prior research have also highlighted how AI practitioners desire understanding lay people's perception on AI fairness in specific use cases (Sonboli et al. 2021; Deng et al. 2022; Smith, Beattie, and Cramer 2023; Deng et al. 2023). Drawing from prior HCI and AI research (Deng et al. 2025; Lee

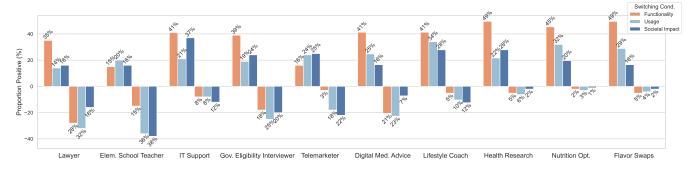


Figure 6: Proportion (%) of presence of switching conditions (Functionality, Usage, Societal Impact) mentioned in participant's switching conditions (Q4) aggregated by use case and divided into positive and negative development acceptability. The total proportion of the switching condition by use case is the sum of both positive and negative bars.

et al. 2019; Cheng et al. 2019), future researchers and practitioners should explore how to meaningfully connect lay people's use case perceptions with AI developers' workflows.

While prior research has emphasized understanding AI consequences (Kieslich, Helberger, and Diakopoulos 2024) and providing tools and processes to uncover impact (Wang et al. 2024; Buçinca et al. 2023; Deng, Barocas, and Vaughan 2024), our findings reveal a greater presence of rule-based reasoning in contentious use cases, suggesting a need for diverse approaches to understanding AI beyond mere consequence anticipation. Moreover, while care was generally predominant, we observed that fairness gained prominence in Lawyer AI and Government Eligibility Interviewer AI. This variability underscores the importance of considering values in AI evaluation and training (Barocas et al. 2021; Bhardwaj et al. 2024), rather than solely emphasizing functionality, which is the current trend in AI research (Birhane et al. 2022). Additionally, societal impact considerations were more evident in unacceptable use cases, emphasizing the necessity for implementing safety guardrails when deploying AI with significant social implications (Solaiman 2023).

Demographics and AI Literacy In line with prior work (Kingsley et al. 2024; Mun et al. 2024), our results highlighted significant differences among demographic groups and perceived acceptance of use cases, especially for professional use (§5.2). Non-majority demographic groups, especially non-male gender groups, found both personal and professional use cases less acceptable. Those experiencing high discrimination chronicity also found professional use less acceptable. Our findings offer empirical insights for future research on AI integration in workplaces, where marginalized workers' agency, income, and well-being are disproportionately impacted (Ming et al. 2024; Alcover et al. 2021).

Furthermore, our work highlighted a potential polarization on perceptions of AI among workers as those with 40+hours employment and those who had advanced degrees were more positive towards AI use cases, suggesting that the relationship stakeholders have to AI and jobs might influence acceptability. This concern was expressed by a participant who opposed the development of Telemarketer

AI, stating that it "overlaps with my industry, and hence serves as a threat to my job security" (P35). Thus, our results corroborate the need to further explore methods to include diverse workers and various stakeholders into the discussion of workplace AI integration and development (Fox et al. 2020; Cheon 2023). We also found that frequent AI usage increased acceptance, while understanding AI ethics and limitations decreased acceptance. This suggests that balanced AI awareness and education, encompassing usage, skills, and ethics, could guide and improve decision-making (Raji, Scheuerman, and Amironesei 2021), e.g., through educational interventions targeting AI skills and ethical implication literacy (e.g., Wong and Nguyen 2021; Shen et al. 2021).

Rationales Through analyzing participants' rationales, we observed an interesting pattern: use cases with less disagreement tended to elicit more cost-benefit (utilitarian) reasoning, while those with greater disagreement showed more rule-based (deontological) reasoning (§5.3). This suggests participants may apply different valuation frameworks, leading to diverging judgments, and highlights that some use cases raise concerns beyond simple utilitarian considerations. Our results thus underscore crucial elements of participants decision making pattern when only assessing impact as many prior works have done. Building upon our empirical findings, future work could develop diverse open-ended analysis for eliciting deliberations as well as tools and interventions using specific types of acceptability reasoning such as rule and value based (Sorensen et al. 2024) or cost-benefit analyses (Li et al. 2024).

However, as our study was limited to the two reasoning type categories, expanding this analysis would be essential for future work including finding ways to classify what features people are considering in their decisions, how the weights on those features impact what kind of decision-making strategy they will use, and whether there are other ways to understand their decision strategies beyond our current classification. Future research can build upon these further understandings to guide policy making and consensus building. For example, future work could explore how group discussions, beyond individual surveys, shape

communities' collective understanding of AI impacts (e.g., Kuo et al. 2024; Lee et al. 2019; DeVos et al. 2022; Gordon et al. 2022; Zhang et al. 2023).

References

- 2023. Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/. Accessed: 2024-01-02.
- 2023. How Do People Feel About AI? A Nationally Representative Survey of Public Attitudes to Artificial Intelligence in Britain
- Alcover, C.-M.; Guglielmi, D.; Depolo, M.; and Mazzetti, G. 2021. "Aging-and-Tech Job Vulnerability": A proposed framework on the dual impact of aging and AI, robotics, and automation among older workers. *Organizational Psychology Review*, 11(2): 175–201.
- Atari, M.; Haidt, J.; Graham, J.; Koleva, S.; Stevens, S. T.; and Dehghani, M. 2023. Morality beyond the WEIRD: How the nomological network of morality varies across cultures. *Journal of Personality and Social Psychology*.
- Awad, E.; Dsouza, S.; Kim, R.; Schulz, J.; Henrich, J.; Shariff, A.; Bonnefon, J.-F.; and Rahwan, I. 2018. The moral machine experiment. *Nature*, 563(7729): 59–64.
- Barocas, S.; Guo, A.; Kamar, E.; Krones, J.; Morris, M. R.; Vaughan, J. W.; Wadsworth, W. D.; and Wallach, H. 2021. Designing Disaggregated Evaluations of AI Systems: Choices, Considerations, and Tradeoffs. In *Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society*, AIES '21, 368–378. New York, NY, USA: Association for Computing Machinery. ISBN 9781450384735.
- Barocas, S.; and Selbst, A. D. 2016. Big data's disparate impact. *Calif. L. Rev.*, 104: 671.
- Bernstein, M. S.; Levi, M.; Magnus, D.; Rajala, B. A.; Satz, D.; and Waeiss, Q. 2021. Ethics and society review: Ethics reflection as a precondition to research funding. *Proceedings of the National Academy of Sciences*, 118(52): e2117261118.
- Bhardwaj, E.; Gujral, H.; Wu, S.; Zogheib, C.; Maharaj, T.; and Becker, C. 2024. Machine learning data practices through a data curation lens: An evaluation framework. In *The 2024 ACM Conference on Fairness, Accountability, and Transparency*, 1055–1067.
- Birhane, A.; Kalluri, P.; Card, D.; Agnew, W.; Dotan, R.; and Bao, M. 2022. The values encoded in machine learning research. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, 173–184.
- Borg, J. S.; and Read, H. 2024. What Is Required for Empathic AI? It Depends, and Why That Matters for AI Developers and Users. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, volume 7, 1306–1318.
- Buçinca, Z.; Pham, C. M.; Jakesch, M.; Ribeiro, M. T.; Olteanu, A.; and Amershi, S. 2023. AHA!: Facilitating AI Impact Assessment by Generating Examples of Harms. *arXiv preprint arXiv:2306.03280*.

- Chen, R. J.; Wang, J. J.; Williamson, D. F.; Chen, T. Y.; Lipkova, J.; Lu, M. Y.; Sahai, S.; and Mahmood, F. 2023. Algorithmic fairness in artificial intelligence for medicine and healthcare. *Nature biomedical engineering*, 7(6): 719–742.
- Cheng, H.-F.; Wang, R.; Zhang, Z.; O'connell, F.; Gray, T.; Harper, F. M.; and Zhu, H. 2019. Explaining decision-making algorithms through UI: Strategies to help non-expert stakeholders. In *Proceedings of the 2019 chi conference on human factors in computing systems*, 1–12.
- Cheon, E. 2023. Powerful Futures: How a Big Tech Company Envisions Humans and Technologies in the Workplace of the Future. *Proc. ACM Hum.-Comput. Interact.*, 7(CSCW2).
- Cheung, V.; Maier, M.; and Lieder, F. 2024. Measuring the decision process in (moral) dilemmas: Self-report measures of reliance on rules, cost-benefit reasoning, intuition, & deliberation.
- Cushman, F. 2013. Action, outcome, and value: A dual-system framework for morality. *Personality and social psychology review*, 17(3): 273–292.
- Deng, W. H.; Barocas, S.; and Vaughan, J. W. 2024. Supporting Industry Computing Researchers in Assessing, Articulating, and Addressing the Potential Negative Societal Impact of Their Work. *arXiv preprint arXiv:2408.01057*.
- Deng, W. H.; Guo, B.; Devrio, A.; Shen, H.; Eslami, M.; and Holstein, K. 2023. Understanding Practices, Challenges, and Opportunities for User-Engaged Algorithm Auditing in Industry Practice. In *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*, 1–18.
- Deng, W. H.; Nagireddy, M.; Lee, M. S. A.; Singh, J.; Wu, Z. S.; Holstein, K.; and Zhu, H. 2022. Exploring how machine learning practitioners (try to) use fairness toolkits. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, 473–484.
- Deng, W. H.; Wang, C.; Han, H. Z.; Hong, J. I.; Holstein, K.; and Eslami, M. 2025. WeAudit: Scaffolding User Auditors and AI Practitioners in Auditing Generative AI. *arXiv* preprint arXiv:2501.01397.
- DeVos, A.; Dhabalia, A.; Shen, H.; Holstein, K.; and Eslami, M. 2022. Toward User-Driven Algorithm Auditing: Investigating users' strategies for uncovering harmful algorithmic behavior. In *Proceedings of the 2022 CHI conference on human factors in computing systems*, 1–19.
- Evetts, J. 2006. Introduction: Trust and professionalism: Challenges and occupational changes.
- Fox, S. E.; Khovanskaya, V.; Crivellaro, C.; Salehi, N.; Dombrowski, L.; Kulkarni, C.; Irani, L.; and Forlizzi, J. 2020. Worker-Centered Design: Expanding HCI Methods for Supporting Labor. In *Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems*, CHI EA '20, 1–8. New York, NY, USA: Association for Computing Machinery. ISBN 9781450368193.
- Golpayegani, D.; Pandit, H. J.; and Lewis, D. 2023. To Be High-Risk, or Not To Be—Semantic Specifications and Implications of the AI Act's High-Risk AI Applications and Harmonised Standards. In *Proceedings of the 2023 ACM*

- Conference on Fairness, Accountability, and Transparency, FAccT '23, 905–915. New York, NY, USA: Association for Computing Machinery. ISBN 9798400701924.
- Gordon, M. L.; Lam, M. S.; Park, J. S.; Patel, K.; Hancock, J.; Hashimoto, T.; and Bernstein, M. S. 2022. Jury learning: Integrating dissenting voices into machine learning models. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*, 1–19.
- Graham, J.; Nosek, B. A.; Haidt, J.; Iyer, R.; Koleva, S.; and Ditto, P. H. 2011. Mapping the moral domain. *Journal of personality and social psychology*, 101(2): 366.
- Graham, J.; Nosek, B. A.; Haidt, J.; Iyer, R.; Spassena, K.; and Ditto, P. H. 2008. Moral foundations questionnaire. *Journal of Personality and Social Psychology*.
- Herdel, V.; Šćepanović, S.; Bogucka, E.; and Quercia, D. 2024. ExploreGen: Large language models for envisioning the uses and risks of AI technologies. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, volume 7, 584–596
- Jakesch, M.; Buçinca, Z.; Amershi, S.; and Olteanu, A. 2022. How different groups prioritize ethical values for responsible AI. In *proceedings of the 2022 ACM conference on fairness, accountability, and transparency*, 310–323.
- Kapania, S.; Siy, O.; Clapper, G.; Sp, A. M.; and Sambasivan, N. 2022. "Because AI is 100% right and safe": User attitudes and sources of AI authority in India. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*, 1–18.
- Kawakami, A.; Taylor, J.; Fox, S.; Zhu, H.; and Holstein, K. 2024. AI Failure Loops in Feminized Labor: Understanding the Interplay of Workplace AI and Occupational Devaluation. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, volume 7, 683–683.
- Kelly, J. 2025. Jobs AI will replace first in the workplace shift.
- Kieslich, K.; Diakopoulos, N.; and Helberger, N. 2023. Anticipating Impacts: Using Large-Scale Scenario Writing to Explore Diverse Implications of Generative AI in the News Environment. *arXiv preprint arXiv:2310.06361*.
- Kieslich, K.; Helberger, N.; and Diakopoulos, N. 2024. My Future with My Chatbot: A Scenario-Driven, User-Centric Approach to Anticipating AI Impacts. In *Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency*, FAccT '24, 2071–2085. New York, NY, USA: Association for Computing Machinery. ISBN 9798400704505.
- Kingsley, S.; Zhi, J.; Deng, W. H.; Lee, J.; Zhang, S.; Eslami, M.; Holstein, K.; Hong, J. I.; Li, T.; and Shen, H. 2024. Investigating What Factors Influence Users' Rating of Harmful Algorithmic Bias and Discrimination. In *Proceedings of the AAAI Conference on Human Computation and Crowd-sourcing*, volume 12, 75–85.
- Kolata, G. 2024. Chatgpt defeated doctors at diagnosing illness The New York Times.
- Kramer, M. F.; Schaich Borg, J.; Conitzer, V.; and Sinnott-Armstrong, W. 2018. When Do People Want AI to Make Decisions? In *Proceedings of the 2018 AAAI/ACM Conference*

- on AI, Ethics, and Society, AIES '18, 204–209. New York, NY, USA: Association for Computing Machinery. ISBN 9781450360128.
- Kuo, T.-S.; Chen, Q. Z.; Zhang, A. X.; Hsieh, J.; Zhu, H.; and Holstein, K. 2024. PolicyCraft: Supporting Collaborative and Participatory Policy Design through Case-Grounded Deliberation. *arXiv preprint arXiv:2409.15644*.
- Lee, H. R. 2024. Contrasting Perspectives of Workers: Exploring Labor Relations in Workplace Automation and Potential Interventions. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, 1–17.
- Lee, M. K.; Kusbit, D.; Kahng, A.; Kim, J. T.; Yuan, X.; Chan, A.; See, D.; Noothigattu, R.; Lee, S.; Psomas, A.; and Procaccia, A. D. 2019. WeBuildAI: Participatory Framework for Algorithmic Governance. *Proc. ACM Hum.-Comput. Interact.*, 3(CSCW).
- Li, J.-J.; Pyatkin, V.; Kleiman-Weiner, M.; Jiang, L.; Dziri, N.; Collins, A. G. E.; Schaich Borg, J.; Sap, M.; Choi, Y.; and Levine, S. 2024. SafetyAnalyst: Interpretable, transparent, and steerable LLM safety moderation. *arXiv*.
- Lin, H.-T.; Balcan, M.-F.; Hadsell, R.; and Ranzato, M. 2020. Getting Started with NeurIPS 2020. NeurIPS blog. McClain, C. 2025. How the U.S. public and AI experts view Artificial Intelligence.
- Michaels, E.; Thomas, M.; Reeves, A.; Price, M.; Hasson, R.; Chae, D.; and Allen, A. 2019. Coding the Everyday Discrimination Scale: implications for exposure assessment and associations with hypertension and depression among a cross section of mid-life African American women. *J Epidemiol Community Health*, 73(6): 577–584.
- Ming, J.; Pei, L.; Varanasi, R. A.; Kawakami, A.; Verdezoto, N.; and Cheon, E. 2024. Labor, Visibility, and Technology: Weaving Together Academic Insights and On-Ground Realities. In *Companion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing*, CSCW Companion '24, 708–711. New York, NY, USA: Association for Computing Machinery. ISBN 9798400711145.
- Mun, J.; Jiang, L.; Liang, J.; Cheong, I.; DeCario, N.; Choi, Y.; Kohno, T.; and Sap, M. 2024. Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits, arXiv:2403.14791.
- of Standards, N. I.; and Technology. 2023. Artificial Intelligence Risk Management Framework (AI RMF 1.0).
- OpenAI. 2022. OpenAI: Our approach to alignment research.
- Parliament, E. 2023. Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI.
- Pierson, E.; Shanmugam, D.; Movva, R.; Kleinberg, J.; Agrawal, M.; Dredze, M.; Ferryman, K.; Gichoya, J. W.; Jurafsky, D.; Koh, P. W.; et al. 2025. Using Large Language Models to Promote Health Equity.
- Pistilli, G.; Muñoz Ferrandis, C.; Jernite, Y.; and Mitchell, M. 2023. Stronger together: on the articulation of ethical charters, legal tools, and technical documentation in ML. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*, 343–354.

Raji, I. D.; Scheuerman, M. K.; and Amironesei, R. 2021. You Can't Sit With Us: Exclusionary Pedagogy in AI Ethics Education. In *Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency*, FAccT '21, 515–525. New York, NY, USA: Association for Computing Machinery. ISBN 9781450383097.

Rajpurkar, P.; Chen, E.; Banerjee, O.; and Topol, E. J. 2022. AI in health and medicine. *Nature medicine*, 28(1): 31–38.

Shen, H.; Deng, W. H.; Chattopadhyay, A.; Wu, Z. S.; Wang, X.; and Zhu, H. 2021. Value cards: An educational toolkit for teaching social impacts of machine learning through deliberation. In *Proceedings of the 2021 ACM conference on fairness, accountability, and transparency*, 850–861.

Smith, J. J.; Beattie, L.; and Cramer, H. 2023. Scoping fairness objectives and identifying fairness metrics for recommender systems: The practitioners' perspective. In *Proceedings of the ACM Web Conference* 2023, 3648–3659.

Solaiman, I. 2023. The Gradient of Generative AI Release: Methods and Considerations. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*, FAccT '23, 111–122. New York, NY, USA: Association for Computing Machinery. ISBN 9798400701924.

Solaiman, I.; Talat, Z.; Agnew, W.; Ahmad, L.; Baker, D.; Blodgett, S. L.; Chen, C.; Daumé III, H.; Dodge, J.; Duan, I.; et al. 2023. Evaluating the social impact of generative ai systems in systems and society. *arXiv preprint arXiv:2306.05949*.

Sonboli, N.; Smith, J. J.; Cabral Berenfus, F.; Burke, R.; and Fiesler, C. 2021. Fairness and transparency in recommendation: The users' perspective. In *Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization*, 274–279.

Sorensen, T.; Jiang, L.; Hwang, J.; Levine, S.; Pyatkin, V.; West, P.; Dziri, N.; Lu, X.; Rao, K.; Bhagavatula, C.; Sap, M.; Tasioulas, J.; and Choi, Y. 2024. Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties. In *AAAI*.

Svensson, L. G. 2006. Professional occupations and status: A sociological study of professional occupations, status and trust.

The White House. 2023. National Artificial Intelligence Research Resource Task Force Releases Final Report.

Times, T. N. Y. 2024. Will Chatbots Teach Your Children?

Wang, B.; Rau, P.-L. P.; and Yuan, T. 2023. Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. *Behaviour & information technology*, 42(9): 1324–1337.

Wang, Z. J.; Kulkarni, C.; Wilcox, L.; Terry, M.; and Madaio, M. 2024. Farsight: Fostering Responsible AI Awareness During AI Application Prototyping. In *Proceedings of the CHI Conference on Human Factors in Computing Systems*, 1–40.

Wong, R. Y.; and Nguyen, T. 2021. Timelines: A world-building activity for values advocacy. In *Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems*, 1–15.

Wongpakaran, N.; Wongpakaran, T.; Wedding, D.; and Gwet, K. L. 2013. A comparison of Cohen's Kappa and Gwet's AC1 when calculating inter-rater reliability coefficients: a study conducted with personality disorder samples. *BMC medical research methodology*, 13: 1–7.

Wu, Y.; Lee, J.-J.; Pillai, A. G.; Cho, J.; Ahmadpour, N.; Roto, V.; Sachathep, T.; Liu, J.; Sawan, M.; Song, D.; Čaić, M.; Cheng, L.; Liu, R.; Kettley, S.; Soares, L.; Grace, K.; and Astell-Burt, T. 2024. Collective Imaginaries for the Futures of Care Work. In *Companion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing*, CSCW Companion '24, 732–735. New York, NY, USA: Association for Computing Machinery. ISBN 9798400711145.

Zhai, C.; Wibowo, S.; and Li, L. D. 2024. The effects of over-reliance on AI dialogue systems on students' cognitive abilities: a systematic review. *Smart Learning Environments*, 11(1): 28.

Zhang, A.; Walker, O.; Nguyen, K.; Dai, J.; Chen, A.; and Lee, M. K. 2023. Deliberating with AI: Improving Decision-Making for the Future through Participatory AI Design and Stakeholder Deliberation. *Proc. ACM Hum.-Comput. Interact.*, 7(CSCW1).

Zhang, B.; and Dafoe, A. 2020. US public opinion on the governance of artificial intelligence. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, 187–193.

A Additional Survey Details

A.1 Survey Questions

In our survey we ask participants to read one or more descriptions of AI use cases and to make two judgments: 1) "Do you think a technology like this should exist?" (Q1) and 2) "If the *juse casei* exists, would you use its services?" (Q5). A question to indicate their level of confidence is asked following each question (Q5, Q6). The participants are asked to both elaborate on their decisions (Q3) and specify the conditions under which they would switch their decisions (Q4). The detailed wordings for the questions are shown in Table 6

Following the main use case questions in both the main and second study, we also asked participants questions about their demographics and literacy levels in AI, and the questions can be found in Table 7 and 8 respectively.

Lastly, while not included in the main text, we asked participants 3 questionnaires about decision making styles to explore the relationship between several decision making styles and the actual decisions of the participants. These included: (1) Oxford Utilitarianism Scale, (2) Toronto Empathy Questionnaire and (3) Moral Foundations Questionnaire. The decision making style questions can be found in Table 9, 10 and 11 respectively.

A.2 Use Case Descriptions

See Table12 for labor replacement use cases as shown to the participants and Table13 for personal health use cases.

Question ID	Question	Answer Type			
AI Perception Question	AI Perception Question (Before)				
AI Perception Before	Overall, how does the growing presence of artificial intelligence (AI) in daily life and society make you feel?	5 Point Likert Scale			
Part 1 Specific Questio	ns				
UCX-1	Do you think a technology like this should be developed?	Yes/No			
UCX-2	How confident are you in your above answer?	5 Point Likert Scale			
UCX-3Y	Please complete the following: [Use Case] should be developed because	Text			
UCX-3N	Please complete the following: [Use Case] should not be developed because	Text			
UCX-4Y	Under what circumstances would you switch your decision from [UCX-2 Answer] should be developed to should not be developed?	Text			
UCX-4N	Under what circumstances would you switch your decision from [UCX-2 Answer] should not be developed to should be developed?	Text			
UCX-5	If [Use Case] exists, would you ever use its services (answer yes, even if you think you would use it very infrequently)?	Yes/No			
UCX-6	How confident are you in your above answer?	5 Point Likert Scale			
AI Perception Question (After)					
AI Perception After	Before we continue, we'd like to get your thoughts on AI one more time. Overall, how does the growing presence of artificial intelligence (AI) in daily life and society make you feel?	5 Point Likert Scale			

Table 6: Main Study Specific Question, the "X" in Question IDs is a placeholder for the use case number, which ranges from 1 to 5, for the 5 use cases in the jobs and personal use cases respectively.

A.3 Participant Details

The demographics of the participants for our study is shown in Tables 15 to 37. There was a fairly balanced distribution of participants across the different age groups, although there was a slightly higher proportion of participants in the 25-34 years old and 45-54 years old age ranges. In terms of racial distribution, there were more White/Caucasian participants compared to the other races. The gender distribution was relatively balanced in terms of males vs non-males. The participants were mostly employed or looking for work and a majority of them also had at least some form of college education. Most participants identified as liberal in terms of political leaning. Participants' AI literacy scores are shown in Table 21 and AI Ethics score are shown in Table 22.

Participants were allocated 5 use cases from one of the scenarios and the allocation between the 2 scenarios are well-balanced and can be found in Table 14.

A.4 Open-text Annotation Dimensions

Reasoning Type Inspired by previous works in moral psychology, we used two main reasoning types to characterize participants' decision making pattern as expressed in their open-text answers: cost-benefit reasoning and rule-based reasoning (Cheung, Maier, and Lieder 2024). These two reasoning types are rooted in two decision making processes in moral and wider decision making literature: utilitarian and deontological reasoning, respectively. Cost-benefit reasoning thus considers the possible outcomes and their expected utility or value when making decisions, and rule-based reasoning shows more inherent value in action or entities. See § 4.2 for further discussion.

Moral Values To annotate which values were prevalent in participants' considerations of use cases, we used five moral values: care, fairness, loyalty, authority, and purity (Graham et al. 2011, 2008). While these dimensions have been re-defined to include more diverse values from participants beyond WEIRD (white, educated, industrialized, rich, and democratic) (Atari et al. 2023), we used these five dimensions due to brevity of the questionnaire, which was used in the survey to provide importance of each values to participants.

Switching Conditions We annotated concerns expressed in switching conditions using three categories: functionality (e.g., errors, bias in systems, limited capabilities), usage (e.g., errors, bias in systems, limited capabilities), and societal impact (e.g., job loss, over-reliance), inspired by harm taxonomy developed by Solaiman et al. and user concern annotation practice adopted by Mun et al..

B Extended Results

Figure 7 shows the distribution of participants' judgment variation across categories as discussed in §5.1.

C Open-text Annotation Details

C.1 Automatic Annotation

Methods We used Open-AI's gpt-40 model with maximum tokens set to 1024 to control response length, use a temperature of 0.7 to manage randomness, and keep top_p at 1 with default settings for frequency and presence penalties at 0. Prompts will be released with data upon acceptance.

Results Results for inter-rater reliability between human and gpt-4o annotations are shown in Table 23.

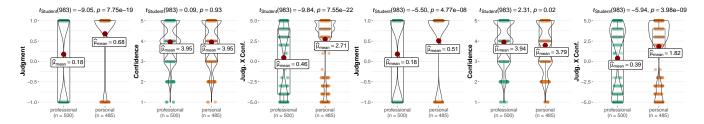


Figure 7: Use case category means and distributions of numerically converted Judgment, Confidence, and Judgment×Confidence. Left three show results for development decisions (Q1, Q2) and right three show results for usage decisions (Q5, Q6). Significance was calculated using Student's t-test as indicated by labels above each plot.

D Factors Impacting Acceptability Judgments

D.1 Use Case Factors

Additional analysis of use case factors showing distribution of judgments by use case sorted by standard deviation is shown in Figure 8. Table 24 shows analysis of use case effect using ANOVA.

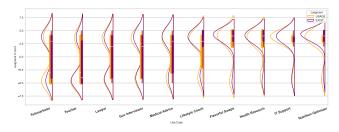


Figure 8: Numerically converted Judgment x Confidence (-5, 5) by use cases distributions sorted by standard deviation of both existence and usage (sum; highest to lowest) using data from Study 1 results.

D.2 Demographics Factors

Additional analysis using ANOVA for demographic factors is shown in Table 25.

Questionnaires Interestingly, only Loyalty had a significant effect on both existence (0.20, p < .001) and usage (0.20, p < .01) as shown in Table 26. Moreover, Empathy had a positive and marginally significant effect for usage (.09, p < .1). However, Loyalty, as shown in Figure 5, does not appear as frequently in participants' open text responses compared to values such as Care and Fairness and is the only value that did not have a significant association with use cases.

E Factors in Participant Rationale

E.1 Reasoning Types

We show the flow of participants' decisions and corresponding rationales throughout use cases in Figure 9, which shows interesting distribution and switching of reasoning types, which would be interesting for future studies to consider. Moreover, Table 27 shows that there are almost no relation

between reasoning types used by the participants and the decision-making style questionnaire results signifying that the reasoning types might be highly use-case specific rather than a character trait. It would be interesting to study the factors that actually influence the choice of reasoning types.

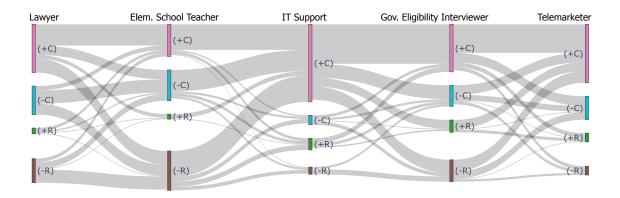
E.2 Impact of Rationale Factors on Judgment

We display the analysis results using ANOVA to understand the effect of rationale factors on judgment in Table 28.

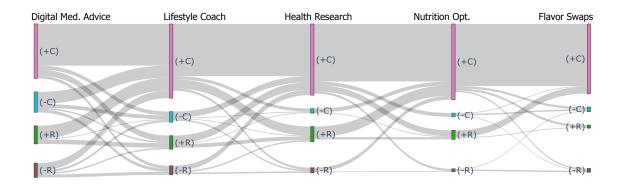
E.3 Factors Influencing Moral Foundations in Rationale

In Table 29 we display analysis result using linear mixed effects on factors that may influence moral foundations appealed to in participants' rationales. We find greater relations with the use cases than personal factors.

F Survey 2: Explicit Weighing of Harms and Benefits of Use Cases


Although not included in main text, we administered a variation of our main study where we asked participants to explicitly reason through harms and benefits. The decisions were measured before and after the explicit weighing of harms and benefits. However, we saw almost no effect.

F.1 Study Overview


To better understand the reasoning behind participants decisions about the judgment and usage of the use cases, we conducted a second study with 1 survey for each category (Labor Replacement Use Cases and Personal Use Cases). The second study includes an additional set of questions to elicit the harms and benefits of developing and not developing an use case to better understand the reasoning behind participants decisions. Furthermore, we asked participants the judgment and usage decision questions before and after the set of harms and benefits questions to see if listing out reasons about an use case would elicit any change in their decisions. The details of the second study can be found in F.2 and the results can be found in F.3.

F.2 Setup and Details

While these same set of questions are asked for all five use cases for our main study, in our second study, participants

(a) Acceptance judgment and reasoning type mapping throughout professional use cases.

(b) Acceptance judgment and reasoning type mapping throughout personal use cases.

Figure 9: Mapping of decisions and reasoning types. + and - denote positive and negative acceptance. "C" denotes Cost-benefit analysis and "R" denotes Rule-based reasoning.

Question ID	Question
D-Q1	How old are you?
D-Q2	Choose one or more races that you consider
	yourself to be
D-Q3	Do you identify as transgender?
D-Q4	How would you describe your gender identity?
D-Q5	How would you describe your sexual orientation?
D-Q6	What is your present religion or religiosity, if any?
D-Q7	In general, would you describe your political
D-Q8	what is the highest level of education you have
D 00	completed?
D-Q9	In which country have you lived in the longest?
D-Q10	What other countries have you lived in for at
D-Q11	least 6 months? Which of the following categories best describe your employment status?
D-Q12	How would you describe the industry your job would be in? (Select all that apply)
D-Q13	Do you identify with any minority, disadvan-
D Q13	taged, demographic, or other specific groups? If so, which one(s)? (E.g., racial, gender identity,
	sexuality, disability, immigrant, veteran, etc.); use commas to separate groups.
D-Q14	(Optional) What are some things that you are most concerned about lately?
$D-Q15_1$	In your day-to-day life how often have any of
	the following things happened to you? You are
	treated with less courtesy or respect than other
D 015	people
$D-Q15_2$	In your day-to-day life how often have any of
	the following things happened to you? You receive poorer service than other people at restau-
	rants or stores
$D - Q15_{3}$	In your day-to-day life how often have any of
D & 103	the following things happened to you? People
	act as if they think you are not smart
$D - Q15_4$	In your day-to-day life how often have any of
_ 44	the following things happened to you? People
	act as if they are afraid of you
$D-Q15_5$	In your day-to-day life how often have any of
	the following things happened to you? You are
D 016	threatened or harassed
D-Q16	If the answer to Q15 is "A few times a year"
	or more frequently to at least one of the state- ments, what do you think is the main reason for
	these experiences? (Select all that apply)
	these experiences: (Select all that appry)

Table 7: Demographic Questions

Question ID	Question
AI-Q1	I can identify the AI technology employed in the applications and products I use.
AI-Q2	I can skillfully use AI applications or products to help me with my daily work.
AI-Q3	I can choose the most appropriate AI applica- tion or product from a variety for a particular task.
AI-Q4	I always comply with ethical principles when using AI applications or products.
AI-Q5	I am never alert to privacy and information security issues when using AI applications or products.
AI-Q6	Î am always alert to the abuse of AI technology.
AI-Q7	How frequently do you use generative AI (i.e., artificial intelligence that is capable of producing high quality texts, images, etc. in response to prompts) products such as ChatGPT, Bard, DALL-E 2, Claude, etc.?
AI-Q8	How familiar are you with limitations and short-comings of generative AI?

Table 8: AI Literacy Questions. The questions are on a 7 point likert scale ranging from Strongly disagree to Neutral to Strongly agree

are randomly allocated a single use case. The second study differs from the main study with an initial set of judgment questions without open-text rationales (Q1 - Initial to Q4 -Initial), which are followed by explicit listing and weighing of the possible harms and benefits of the use case in the context of both developing and not developing the use case. We then again ask participants the same set of judgment questions along with the open-text questions to elaborate on their reasoning, similar to the main study. To understand how the judgment and usage decisions are affected by other factors, we asked the participants about their demographics, ai literacy levels and several other reasoning factors after the main set of questions, and these questions can be found in §A.1 The main questions for the second study can be found in Table 31. The participant demographics for the second study can be found in Tables 32 to 37. The distribution of each use case within each scenario (Labor Replacement Use Cases and Personal Use Cases) for the second study is relatively well-balanced and can be found in Table 30.

F.3 Results

To explore the possible impact of explicitly weighing harms and benefits of a use case on participant's decision, we analyzed the participant's judgment of acceptability before and after explicit weighing of harms and benefits (Study 2; see Table31 for details on questions asked). The Type III ANOVA with Satterthwaite's method for measurement time (before, after) indicated a marginally significant effect F(1,201.05)=3.371, p=0.0678 on usage judgment weighed by confidence, which suggests that explicit harms and benefits weighing may have an influence, albeit not at conventional significance levels. We further analyzed reasoning effect on each subset of data pertinent to each use

Question ID	Question
Util1	If the only way to save another person's life during an emergency is to sacrifice one's own leg, then one is morally required to make this sacrifice.
Util2	It is morally right to harm an innocent person if harming them is a necessary means to helping several other innocent people.
Util3	From a moral point of view, we should feel obliged to give one of our kidneys to a person with kidney failure since we don't need two kidneys to survive, but really only one to be healthy.
Util4	If the only way to ensure the overall well-being and happiness of the people is through the use of political oppression for a short, limited period, then political oppression should be used.
Util5	From a moral perspective, people should care about the well-being of all human beings on the planet equally; they should not favor the well-being of people who are especially close to them either physically or emotionally
Util6	It is permissible to torture an innocent person if this would be necessary to provide information to prevent a bomb going off that would kill hun- dreds of people.
Util7	It is just as wrong to fail to help someone as it is to actively harm them yourself.
Util8	Sometimes it is morally necessary for innocent people to die as collateral damage if more people are saved overall.
Util9	It is morally wrong to keep money that one doesn't really need if one can donate it to causes that provide effective help to those who will benefit a great deal.

Table 9: Utilitarianism Questions. The questions are on a 7-point likert scale ranging from 1 (Strongly Disagree) to 7 (Strongly Agree)

Question ID	Question
Empathy1	When someone else is feeling excited, I tend to get excited too.
Empathy2	Other people's misfortunes do not disturb me a great deal.
Empathy3	It upsets me to see someone being treated disrespectfully.
Empathy4	I remain unaffected when someone close to me is happy.
Empathy5	I enjoy making other people feel better.
Empathy6	I have tender, concerned feelings for people less
	fortunate than me.
Empathy7	When a friend starts to talk about his/her prob- lems, I try to steer the conversation towards something else.
Empathy8	I can tell when others are sad even when they do not say anything.
Empathy9	I find that I am "in tune" with other people's moods.
Empathy10	I do not feel sympathy for people who cause their own serious illnesses.
Empathy11	I become irritated when someone cries.
Empathy12	I am not really interested in how other people
Empathy13	I get a strong urge to help when I see someone who is upset.
Empathy14	When I see someone being treated unfairly, I do
E15	not feel very much pity for them.
Empathy15	I find it silly for people to cry out of happiness.
Empathy16	When I see someone being taken advantage of, I feel kind of protective towards him/her.

Table 10: Empathy Questions. The questions are on a 5 point likert scale ranging from Never to Always.

Question ID	Question				
Moral Founda	ation Questionnaire (First Half)				
wrong, to wha	When you decide whether something is right or wrong, to what extent is the following consideration relevant to your thinking?				
MFQ 1	Whether or not someone suffered emotionally				
MFQ 2	Whether or not some people were treated differently than others				
MFQ 3	Whether or not someone's action showed love for his or her country				
MFQ 4	Whether or not someone showed a lack of respect for authority				
MFQ 5	Whether or not someone violated standards of purity and decency				
MFQ 6	Whether or not someone was good at math				
MFQ 7	Whether or not someone cared for someone weak or vulnerable				
MFQ 8	Whether or not someone acted unfairly				
MFQ 9	Whether or not someone did something to be-				
MFQ 10	tray his or her group Whether or not someone conformed to the tra-				
MFQ 11	ditions of society Whether or not someone did something disgust-				
MIPQ 11	ing				
Moral Foundation Questionnaire (Second Half)					
MFQ 12	Compassion for those who are suffering is the most crucial virtue.				
MFQ 13	When the government makes laws, the number				
	one principle should be ensuring that everyone is treated fairly.				
MFQ 14	I am proud of my country's history.				
MFQ 15	Respect for authority is something all children need to learn.				
MFQ 16	People should not do things that are disgusting,				
MFQ 17	even if no one is harmed. It is better to do good than to do bad.				
MFQ 17 MFQ 18	One of the worst things a person could do is hurt				
WI Q 10	a defenseless animal.				
MFQ 19	Justice is the most important requirement for a society.				
MFQ 20	People should be loyal to their family members,				
MFQ 21	even when they have done something wrong. Men and women each have different roles to play in society.				
MFQ 22	I would call some acts wrong on the grounds that they are unnatural.				
	1 -				

Table 11: Moral Foundation Questionnaire: 20 Questions. The first part of the questionnaire consists of 11 questions on a 6-point likert scale ranging from 0 (Not At All Relevant) to 5 (Extremely Relevant). The second part of the questionnaire consists of 11 questions on a 6-point likert scale ranging from 0 (Strongly Disagree) to 5 (Strongly Agree). Note: Questions MFQ 6 and 17 are meant to catch participants that are not answering the questionnaire properly and are not included in the MFQ score calculation.

case through a mixed effects regression model with judgment metric as a dependent variable and measurement time as an independent variable with random effect from subject. Interestingly, the result was significant for Customized Lifestyle Coach AI across different judgments including, existence $(\beta = -0.40, SE = 0.18, p < .05)$, confidenceweighed existence ($\beta = -1.05, SE = 0.51, p < .05$), and confidence-weighed usage judgments ($\beta = -0.75, SE =$ 0.38, p < .05). Explicit weighing also had a significant effect on confidence of existence judgment for Digital Medical Advice AI ($\beta = 0.30, SE = 0.11, p < .01$). The negative coefficients for Customized Lifestyle AI suggests that weighing harms and benefits caused participants to lower acceptance and positive coefficient to confidence on judgments on Digital Medical AI suggests that weighing harms and benefits solidified decisions. These diverging effects signify an interesting interaction between use cases and explicit weighing of harms and benefits.

Use Case	Education Level	Description
Lawyer AI	High: Doctoral or Professional Degree, Master's Degree	Imagine an AI system that performs the tasks of a Lawyer digitally. The AI system advises and represents clients on digital legal proceedings or transactions. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Lawyer AI in the rest of the survey.
Elementary School Teacher AI	Middle High: Bachelor Degree, Associate Degree	Imagine an AI system that performs the tasks of an Elementary School Teacher digitally. The AI system teaches academic skills to students at the elementary school level through online interactions. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Elementary School Teacher AI in the rest of the survey.
IT Support Specialist AI	Middle: Some College No Degree, Postsecondary Nondegree Award	Imagine an AI system that performs the tasks of an IT Support Specialist digitally. The AI system maintains computer networks and provides technical help to computer users. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as IT Support Specialist AI in the rest of the survey.
Government Eligibility Interviewer AI	Middle Low: High School Diploma or Equivalent	Imagine an AI system that performs the tasks of an Eligibility Interviewer for Government Programs digitally. This AI system determines eligibility of persons applying to receive assistance from government programs and agency resources, such as welfare, unemployment benefits, social security, and public housing. The system can read, write, and talk fluently. It has expertlevel knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Government Eligibility Interviewer AI in the rest of the survey.
Telemarketer AI	Low: No Formal Educational Credential	Imagine an AI system that performs the tasks of a Telemarketer digitally. The AI system solicits donations or orders for goods or services over the telephone. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Telemarketer AI in the rest of the survey.

Table 12: Labor replacement use case description and corresponding education levels

Use Case	EU Risk Level	Description
Digital Medical Advice AI	High	Imagine an AI system that provides preliminary medical assessments to help patients get efficient medical consultations and treatment (i.e., medical advice). It analyzes physical characteristics, reported symptoms, and medical history to suggest potential health issues, provide treatment plans, or direct patients to appropriate medical professionals and facilities. In emergencies, it can also act as a triage tool used by medical institutions to prioritize care. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Digital Medical Advice AI in the rest of the survey.
Customized Lifestyle Coach AI	High / Limited	Imagine an AI system that offers personalized advice on how to manage healthy lifestyles and enhance wellness (i.e., customized lifestyle coaching). Beyond health tracking, it provides actionable insights on integrating fitness routines, dietary adjustments, and mindfulness practices into your daily schedule. The health data it collects can also be used to provide accurate information for life and health insurance. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Customized Lifestyle Coach AI in the rest of the survey.
Personal Health Research AI	Limited	Imagine an AI system that summarizes and documents complex research findings related to personal health issues users are interested in (i.e., personalized health research findings). It translates medical jargon into accessible language, explains the latest studies relevant to conditions of user interest, and provides a summary of the overall findings. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Personal Health Research AI in the rest of the survey.
Nutrition Optimizer AI	Limited / Low	Imagine an AI system that organizes meal schedules and optimizes nutritional intake based on a user's specific health goals (i.e., optimal nutrition plan). It crafts recipes, meal plans, and grocery lists optimized for users' culinary preferences, dietary needs, fitness ambitions, and lifestyle. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Nutrition Optimizer AI in the rest of the survey.
Flavorful Swaps AI	Low	Imagine an AI system that aims to enhance users' diets by suggesting delicious, health-conscious alternatives to unhealthy favorite foods (i.e., healthy flavorful swaps). It offers meal swaps that maintain satisfying flavors while being aligned with users' health and dietary goals. The system can read, write, and talk fluently. It has expert-level knowledge, can browse the internet, and can process and read massive amounts of data. We will refer to the AI system as Flavorful Swaps AI in the rest of the survey.

Table 13: Personal health use cases and corresponding EU risk levels

Use Case	Participants Allocated
Personal Use Cases	
Digital Medical Advice Customized Lifestyle Coach Personal Health Research Nutrition Optimizer Flavorful Swaps	97
Labor Replacement Use Cases	
Lawyer Elementary School Teacher IT Support Specialist Government Eligibility Interviewer Telemarketer	100

Table 14: Participant allocation to each category of scenarios.

Racial Identity	(N) (%) A	Age N (%) Ge	ender Identity	N(%)	Education	N (%)
White or Caucasian	33 (33.0) 1	8-24 11 ((11.0) Ma	an	49 (49.0)	Bachelor's degree	36 (36.0)
Black or African American	23 (23.0) 4	5-54 27 ((27.0) No	n-male	51 (51.0)	Graduate degree*	18 (18.0)
Asian	21 (21.0) 2	5-34 22 ((22.0)			Some college *	17 (17.0)
Mixed	13 (13.0) 5	5-64 20 ((20.0)			High school diploma*	16 (16.0)
Other	10 (10.0) 3	5-44 14 ((14.0)			Associates degree*	13 (13.0)
	2 (0.7)	5+ 6 (6	5.0)			Some high school*	0(0.0)

Table 15: Labor Replacement Study 1 Survey: Racial, age, gender identities and education level of participants. Asterisk (*) denotes labels shortened due to space.

Minority/Disadvantaged Group	(N) (%)	Transgender	N (%)	Sexuality	N (%)	Political Leaning	N (%)
No	68 (68.0)	No	97 (97.0)	Heterosexual	78 (78.0)	Liberal	34 (34.0)
Yes	32 (32.0)	Yes	2(2.0)	Others	22 (22.0)	Moderate	23 (23.0)
		Prefer not to say	1 (1.0)			Strongly liberal	20 (20.0)
						Conservative	18 (18.0)
						Strongly conservative	4 (4.0)
						Prefer not to say	1 (1.0)

Table 16: Labor Replacement Study 1 Survey: Additional demographic identities

Longest dence	Resi-	(N) (%)	Employment	N (%)	Occupation (Top 10)	N (%)	Religion	N (%)
United St America	ates of	97 (97.0)	Employed, 40+	53 (53.0)	Other	35 (35.0)	Christian	29 (29.0)
Others		3 (3.0)	Employed, 1-39	16 (16.0)	Prefer not to answer	10 (10.0)	Agnostic	20 (20.0)
			Retired	9 (9.0)	Health Care and Social Assistance	10 (10.0)	Atheist	15 (15.0)
			Not employed, looking for work	7 (7.0)	Information	10 (10.0)	Nothing in particular	13 (13.0)
			Disabled, not able to work	5 (5.0)	Manufacturing	7 (7.0)	Catholic	11 (11.0)
			Not employed, NOT looking for work	4 (4.0)	Professional, Scientific, and Technical Services	7 (7.0)	Muslim	5 (5.0)
			Other: please specify	4 (4.0)	Arts, Enter- tainment, and Recreation	6 (6.0)	Hindu	3 (3.0)
			Prefer not to dis- close	2 (2.0)	Retail Trade	6 (6.0)	Something else, Specify	2 (2.0)
					Finance and Insurance	5 (5.0)	Jewish	1 (1.0)
					Transportation and Warehousing, and Utilities	4 (4.0)	Buddhist	1 (1.0)

Table 17: Labor Replacement Study 1 Survey: Additional demographic identities. The Occupation category was capped at the top 10 for brevity, with the remaining occupations merged together with the Other: please specify option.

Racial Identity	(N) (%)	Age	N (%)	Gender Identity	N (%)	Education	N (%)
White or Caucasian	29 (29.9)	45-54	30 (30.9)	Man	50 (51.5)	Bachelor's degree	40 (41.2)
Black or African American	26 (26.8)	25-34	26 (26.5)	Non-male	47 (48.5)	Some college *	21 (21.6)
Asian	20 (20.6)	55-64	14 (14.4)			Graduate degree*	14 (14.4)
Other	14 (14.4)	35-44	13 (13.4)			High school diploma*	13 (13.4)
Mixed	8 (8.2)	18-24	9 (9.3)			Associates degree*	8 (8.2)
	2 (0.7)	65+	4 (4.1)			Some high school*	1 (1.0)
		Prefer not to disclose	1 (1.0)				

Table 18: Personal Use Cases Study 1 Survey: Racial, age, gender identities and education level of participants. Asterisk (*) denotes labels shortened due to space.

Minority/Disadvantaged Group	(N) (%)	Transgender	N (%)	Sexuality	N(%)	Political Leaning	N (%)
No	51 (52.6)	No	94 (96.9)	Heterosexual	75 (77.3)	Liberal	34 (35.1)
Yes	46 (47.4)	Yes Prefer not to say	3 (3.1) 0 (0.0)	Others	22 (22.7)	Moderate Strongly liberal	31 (32.0) 12 (12.4)
		1 Telef flot to say	0 (0.0)			Conservative	10 (10.3)
						Strongly conservative	9 (9.3)
						Prefer not to say	1 (1.0)

Table 19: Personal Use Cases Study 1 Survey: Additional demographic identities

Longest dence	Resi-	(N) (%)	Employment	N (%)	Occupation (Top 10)	N (%)	Religion	N (%)
United S America	States of	93 (95.9)	Employed, 40+	46 (47.4)	Other	36 (35.6)	Christian	40 (40.8)
Others		4 (4.1)	Employed, 1-39	22 (22.7)	Health Care and Social Assistance	11 (11.3)	Catholic	16 (16.3)
			Not employed, looking for work	13 (13.4)	Prefer not to answer	10 (10.3)	Agnostic	15 (15.3)
			Not employed, NOT looking for work	4 (4.1)	Professional, Scientific, and Technical Services	9 (9.3)	Nothing in particular	11 (11.2)
			Disabled, not able to work	4 (4.1)	Educational Services	9 (9.3)	Atheist	5 (5.1)
			Other: please specify	4 (4.1)	Finance and Insurance	8 (8.2)	Something else, Specify	5 (5.1)
			Retired	3 (3.1)	Arts, Entertainment, and Recreation	5 (5.2)	Buddhist	3 (3.1)
			Prefer not to dis- close	1 (1.0)	Manufacturing	5 (5.2)	Muslim	1 (1.0)
					Retail Trade Accommodation and Food Services	4 (4.1) 4 (4.1)	Jewish Hindu	1 (1.0) 1 (1.0)

Table 20: Personal Use Cases Study 1 Survey: Additional demographic identities. The Occupation category was capped at the top 10 for brevity, with the remaining occupations merged together with the Other: please specify option.

Score	AI Awareness	AI Usage	AI Evaluation	Gen AI Usage Freq.	Gen AI Limit. Familiarity
1	25	15	30	35	55
2	40	60	75	200	320
3	75	90	105	155	345
4	140	125	125	235	230
5	380	310	275	220	35
6	280	300	310	140	<u> </u>
7	45	85	65	_	_

Table 21: AI literacy scale participant count. Questions are on a 7-point likert scale of increasing score meaning increase in literacy for the aspect. Gen AI Usage Frequency has max score of 6 and Limitation Familiarity has max value of 5.

AI Ethics Score	Count
5	15
6	10
7	25
8	25
9	75
10	105
11	165
12	100
13	105
14	90
15	120
16	80
17	35
18	35

Table 22: AI ethics score count for total AI ethics score (sum over 3 questions with 7 point likert scale with max possible value of 21)

Category	AC1	Interpretation	95% CI	p-value	Z	SE	PA	PE
Cost Benefit	0.976	Almost Perfect	(0.942, 1.000)	0.0	56.9	0.0172	0.980	0.164
Rule Based	0.848	Almost Perfect	(0.754, 0.943)	0.0	17.8	0.0476	0.890	0.276
Care	0.705	Substantial	(0.563, 0.847)	2.22×10^{-16}	9.88	0.0713	0.850	0.492
Fairness	0.609	Substantial	(0.448, 0.769)	$\boldsymbol{2.36\times10^{-11}}$	7.53	0.0808	0.790	0.464
Authority	0.897	Almost Perfect	(0.822, 0.972)	0.0	23.70	0.0378	0.920	0.226
Purity	0.801	Almost Perfect	(0.693, 0.908)	0.0	14.77	0.0542	0.850	0.248
Functionality	0.701	Substantial	(0.559, 0.844)	$4.44 imes10^{-16}$	9.79	0.0716	0.850	0.498
Usage	0.674	Substantial	(0.527, 0.822)	$1.27 imes10^{-14}$	9.05	0.0745	0.830	0.478
Societal Impact	0.566	Moderate	(0.397, 0.735)	$\boldsymbol{1.59 \times 10^{-9}}$	6.66	0.0851	0.750	0.424

Table 23: Inter-rater Agreement using Gwet's AC1. Interpretation according to (Wongpakaran et al. 2013).

Acceptability	Aspect	Factor	Sum Sq	Mean Sq	NumDF	DenDF	Pr(>F)
	т 1	Category	29.903	29.903	1	197	5.98e-11 ***
EXIST	Judgment	Use Case	86.116	9.5684	9	641.38	< 2.2e-16 ***
	C6-1	Category	0.0017113	0.0017113	1	197	0.9563
	Confidence	Use Case	13.519	1.5021	9	603.23 2.7243	0.004037 **
	T	Category	8.4257	8.4257	1	197	0.0002488 ***
USAGE	Judgment	Use Case	73.801	8.2001	9	610.34	< 2.2e-16 ***
CONCE .	C6-1	Category	1.3444	1.3444	1	197	0.153
	Confidence	Use Case	20.721	2.3023	9	603.36	0.0001783 ***

Table 24: ANOVA analysis of LMER models judgment \sim category + (1 | subject) and judgment \sim useCase + (1 | subject) (same formulas repeated with confidence as a dependent variable) analyzed with Study 1 data.

	EXIST				USAGE	
Demographics	Judgment	Confidence	Judg.×Conf.	Judgment	Confidence	Judg×Conf.
All						
Gender	16.60^{***}	0.19	16.71^{***}	15.26^{***}	0.83	13.14^{***}
Race	1.62	4.09^{**}	1.45	0.65	5.12^{***}	0.45
Employment	1.13	3.03^*	1.14	0.43	1.71	0.69
Sexual Orientation	0.42	0.37	0.19	0.75	5.22^*	0.09
Professional						
Race	2.56^{*}	1.80	2.34°	1.04	2.91^*	0.48
Gender	18.37^{***}	0.05	19.51^{***}	19.83^{***}	0.19	20.21^{***}
Education	1.98	0.96	1.34	2.25°	1.12	2.07^{\cdot}
Discrimination	2.18	0.68	2.67^{\cdot}	0.29	1.46	0.13
Personal						
Race	2.11^{-}	4.36^{**}	2.28^{\cdot}	0.16	4.07^{**}	0.38
Political View	0.38	3.39^*	0.86	0.33	1.56	0.36
Employment	0.85	${f 2.42}^*$	1.47	0.33	0.30	0.36

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 25: ANOVA Results by Demographic Category (F-value with Significance)

		EXIST (β (SE))			USAGE (β (SE))	
Decision Style Factors	Judg.	Conf.	Judg.×Conf.	Judg.	Conf.	Judg.×Conf.
(Intercept)	0.11(0.34)	3.10 *** (0.46)	-0.32(1.46)	-0.74(0.39)	2.98 *** (0.49)	-4.04^* (1.68)
MFQ Care	0.00(0.01)	-0.01(0.02)	0.01(0.06)	-0.00(0.02)	0.02(0.02)	-0.01(0.07)
MFQ Fairness	-0.01(0.02)	0.04(0.02)	-0.03(0.07)	0.01(0.02)	0.01(0.02)	0.05(0.08)
MFQ Loyalty	$0.04^{***} (0.01)$	-0.01(0.02)	$0.18^{***} (0.05)$	$0.04^{**} (0.01)$	-0.01(0.02)	$0.18^{**} (0.06)$
MFQ Authority	-0.01(0.01)	0.02(0.02)	-0.05(0.05)	0.00(0.02)	0.03(0.02)	0.02(0.06)
MFQ Purity	$0.00\ (0.01)$	0.02(0.01)	$0.04\ (0.04)$	-0.01(0.01)	0.00(0.02)	-0.01(0.05)
Empathy	0.01(0.03)	0.03(0.04)	0.05(0.13)	$0.06\ (0.04)$	0.02(0.05)	$0.28\ (0.15)$
InstrumentalHarm	0.00(0.03)	-0.01(0.04)	0.04(0.13)	-0.02(0.03)	-0.01(0.04)	-0.06(0.15)
ImpartialBenificence	0.03(0.03)	-0.01(0.04)	0.08(0.13)	$0.02\ (0.04)$	-0.02(0.05)	0.06(0.15)
AIC	2412.17	2539.14	5149.55	2442.29	2671.82	5132.26
BIC	2470.88	2597.85	5208.26	2501.01	2730.53	5190.97
Log Likelihood	-1194.08	-1257.57	-2562.77	-1209.15	-1323.91	-2554.13
Num. obs.	985	985	985	985	985	985
Num. groups: prolific_id	197	197	197	197	197	197
Num. groups: use_case	10	10	10	10	10	10
Var: prolific_id (Intercept)	0.12	0.37	2.71	0.23	0.42	4.65
Var: use_case (Intercept)	0.11	0.01	2.22	0.08	0.02	1.58
Var: Residual	0.55	0.56	8.53	0.53	0.64	7.70

 $^{^{***}}p < 0.001; ^{**}p < 0.01; ^{*}p < 0.05$

Table 26: Coefficients with standard error in parenthesis with following models: Judgment \sim MFQ $_{foundation}$ + Empathy + InustrumentalHarm + ImpartialBeneficence + (1|Subject) + (1|useCase). Bolded value for empathy had p < 0.1.

	Cost-benefit	Rule-based
(Intercept)	0.73 ***(0.13)	$0.28^{*}(0.13)$
MFQ Care	-0.00(0.01)	0.00(0.01)
MFQ Fairness	0.01(0.01)	0.00(0.01)
MFQ Loyalty	$0.01^*(0.00)$	-0.01(0.01)
MFQ Authority	-0.00(0.01)	0.00(0.01)
MFQ Purity	-0.00(0.00)	0.00(0.00)
Empathy	0.00(0.01)	-0.01(0.01)
InstrumentalHarm	0.00(0.01)	-0.00(0.01)
ImpartialBenificence	-0.00(0.01)	-0.00(0.01)
AIC	668.43	815.32
BIC	727.14	874.03
Log Likelihood	-322.21	-395.66
Num. obs.	985	985
Num. groups: prolific_id	197	197
Num. groups: use_case	10	10
Var: prolific_id (Intercept)	0.02	0.02
Var: use_case (Intercept)	0.00	0.01
Var: Residual	0.10	0.11

p < 0.001; p < 0.01; p < 0.05

Table 27: Coefficient and standard error with significance. Model defined by reasoningType \sim MFQ $_{foundation}$ + Empathy + InstrumentalHarm + ImpartialBeneficence + (1|subject) + (1|useCase)

Acceptability	Factor	Sum Sq	Mean Sq	NumDF	DenDF	Pr(>F)
	Judgment					
	Cost Benefit	2.764	2.764	1	953.92	0.0017 **
	Rule Based	6.939	6.939	1	937.59	7.57e-07 ***
	Fairness	3.073	3.073	1	969.63	0.00095 ***
	Authority	3.941	3.941	1	973.72	0.00018 ***
	Usage	127.631	127.631	1	828.54	<2.2e-16 ***
	Confidence					
EXIST	Rule Based	5.5845	5.5845	1	854.68	0.00149 **
	Fairness	3.9022	3.9022	1	893.72	0.00787 **
	Judgment x Confid	dence				
	Cost Benefit	44.72	44.72	1	936.85	0.00072 ***
	Rule Based	82.21	82.21	1	917.67	4.79e-06 ***
	Fairness	43.81	43.81	1	971.97	0.00081 ***
	Authority	56.43	56.43	1	965.79	0.00015 ***
	Usage	2458.62	2458.62	1	887.02	<2.2e-16 ***
	Societal Impact	22.15	22.15	1	969.86	0.0171 *
	Judgment					
	Cost Benefit	0.28	0.28	1	930.56	0.0177 *
	Usage	496.98	496.98	1	937.06	<2e-16 ***
	Confidence					
	Cost Benefit	2.4825	2.4825	1	863.46	0.0443 *
USAGE	Care	3.6966	3.6966	1	812.12	0.0142 *
	Usage	11.9628	11.9628	1	813.76	1.12e-05 ***
	Judgment x Confid	dence				
	Cost Benefit	143.66	143.66	1	872.38	4.92e-06 ***
	Fairness	72.485	72.485	1	918.88	0.00113 **
	Societal Impact	69.555	69.555	1	932.22	0.00143 **

Table 28: ANOVA analysis of the LMER model results (significant results only).

				T 1.	
	Care	Fairness	Purity	Loyalty	Authority
(Intercept) (Telemarketer)	$1.74^{***} (0.31)$	0.29(0.23)	$-2.80^{***} (0.42)$	$-4.82^{***} (1.03)$	$-2.29^{***} (0.35)$
MFQ_care	0.08(0.19)	-0.12(0.13)	-0.36(0.19)	-0.15(0.43)	-0.01 (0.19)
MFQ_fairness	0.13(0.19)	$0.31^* \ (0.13)$	0.30(0.20)	-0.19(0.43)	0.14(0.19)
MFQ_loyalty	$0.60^{**} \ (0.21)$	$0.31^{*}\ (0.14)$	-0.14(0.21)	-0.34(0.57)	-0.12(0.20)
MFQ_authority	$-0.48^* \ (0.24)$	-0.23(0.16)	0.23(0.24)	0.06(0.56)	0.23(0.24)
MFQ_purity	0.28(0.19)	-0.16(0.13)	-0.07(0.20)	-0.05(0.44)	-0.22(0.19)
empathy_total	0.06(0.15)	0.04(0.10)	0.07(0.15)	0.24(0.39)	-0.05(0.15)
InstrumentalHarm	-0.04(0.15)	0.12(0.10)	-0.14(0.16)	-0.10(0.39)	0.09(0.15)
ImpartialBenificence	0.09(0.15)	-0.05(0.10)	$-0.37^* \ (0.16)$	-0.44(0.41)	-0.07(0.15)
Gov. Eligi. Interviewer	0.06(0.39)	$1.45^{***} (0.35)$	$-1.72^* \ (0.82)$		-0.01(0.44)
IT Support Specialist	$1.14^* \ (0.46)$	$0.76^{*}\ (0.32)$	0.44(0.49)	_	-0.72(0.50)
Elementary School Teacher	$0.88^{*}\ (0.44)$	$-0.66^* \ (0.31)$	0.90(0.47)	1.43(1.13)	0.42(0.42)
Lawyer	-0.48(0.37)	$0.70^* \ (0.32)$	-0.71(0.60)	0.71(1.24)	$1.41^{***} (0.40)$
Flavorful Swaps	0.73(0.47)	-0.18(0.33)	$1.50^{**} (0.48)$	-0.04(1.43)	-0.80(0.55)
Nutrition Optimizer	$1.14^* \ (0.50)$	-0.37(0.33)	-0.01(0.55)	<u> </u>	-0.26(0.50)
Personal Health Research	$1.46^{**} (0.54)$	0.53(0.34)	-0.32(0.58)	_	0.42(0.47)
Cust, Lifestyle Coach	0.71(0.47)	0.47(0.34)	0.56(0.51)	-0.04(1.43)	-0.64(0.54)
Digital Medical Advice	$1.45^{**} (0.53)$	0.02(0.33)	-0.50 (0.60)	<u> </u>	$1.47^{***} (0.44)$
AIC	750.75	1256.07	644.21	120.53	845.93
BIC	843.71	1349.03	737.17	213.49	938.89
Log Likelihood	-356.38	-609.04	-303.11	-41.26	-403.97
Num. obs.	985	985	985	985	985
Num. groups: prolific_id	197	197	197	197	197
Var: prolific_id (Intercept)	1.27	0.63	1.10	0.00	1.56

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 29: Effects and standard error in parenthesis of the annotation output of participant answers modeled with following formula $Annot_{foundation} \sim MFQ_{foundation} + empathy + instrumentalHarm + impartialBeneficence + useCase + (1|subject) using glmer with family set to binomial. Intercept shows effects when categorical variables are set to following: useCase = Telemarketer and Type = Cost-Benefit.$

Use Case	Participants Allocated
Personal Use Cases	
Digital Medical Advice	20
Customized Lifestyle Coach	20
Personal Health Research	19
Nutrition Optimizer	21
Flavorful Swaps	17
Labor Replacement Use Cases	
Lawyer	20
Elementary School Teacher	22
IT Support Specialist	17
Government Eligibility Interviewer	19
Telemarketer	23

Table 30: Use Case allocation for Study 2. Specific participant numbers are listed for each use case.

Question ID	Question	Answer Type
AI Perception Questio	n (Before)	
AI Perception Before	Overall, how does the growing presence of artificial intelligence (AI) in daily life and society make you feel?	5 Point Likert Scale
Initial Decision/Usage		
Q1 - Initial	Do you think a technology like this should be developed?	Yes/No
Q2 - Initial	How confident are you in your above answer?	5 Point Likert Scal
Q3 - Initial	If [Use Case] exists, would you ever use its services (answer yes, even if you think you would you it work in frequently)?	Yes/No
Q4 - Initial	would use it very infrequently)? How confident are you in your above answer?	5 Point Likert Scal
Benefits of Developing		0 T GIME EMILETE SUM
Q1 - BDev	How will [Use Case] positively impact individuals?	Text
Q2 - BDev	Which groups of people do you think would benefit the most from the above positive	Text
Q2	impacts? (You can list more than one group.)	
Q3 - BDev	How beneficial would [Use Case] be if it had the above positive impacts?	9 Point Likert Scal
Malicious Uses of Dev	veloping Use Case	
Q1 - HDev	Please complete the following: [Use Case] could have a negative impact if it was used to	Text
Q1 - HDev	What would be the negative impact of the above malicious or unintended uses?	Text
Q2 - HDev	Which groups of people do you think would be harmed the most by the above malicious	Text
O3 - HDev	or unintended uses? (You can list more than one group.) How harmful would [Use Case] be if it had the above negative impacts?	9 Point Likert Scal
Failures of Developing	T	1
Q1 - HDevF	Please complete the following: If [Use Case] failed to do its intended task properly, fully,	Text
Q1 - IIDevi	and accurately, it could have a negative impact if it	Text
Q1 - HDevF	What would be the negative impact of those failure cases?	Text
Q2 - HDevF	Which groups of people do you think would be harmed the most by the above failure	Text
Q3 - HDevF	cases? (You can list more than one group.) How harmful would [Use Case] be if it had the above negative impacts?	9 Point Likert Scal
Benefits of Not Develo	· · · · · · · · · · · · · · · · · · ·	7 Tome Electr Scal
		l m
Q1 - BNonDev Q2 - BNonDev	Please complete the following: Not having [Use Case] would be beneficial because Which groups of people do you think would benefit the most by banning or not developing	Text Text
Q2 - Bronbev	[Use Case]? (You can list more than one group.)	Text
Q3 - BNonDev	How beneficial would it be if [Use Case] was banned or not developed and it had the above positive impact?	9 Point Likert Scal
Harms of Not Develor		
		m .
Q1 - HNonDev Q2 - HNonDev	Please complete the following: Not having [Use Case] would be harmful because Which groups of people do you think would be harmed the most by banning or not devel-	Text Text
Q2 III (01120)	oping [Use Case]? (You can list more than one group.)	
Q3 - HNonDev	How harmful would it be if [Use Case] was banned or not developed and it had the above	9 Point Likert Scal
	negative impacts?	
Final Decision/Usage		
Q1 - Final	Do you think a technology like this should be developed?	Yes/No
Q2 - Final Q3 - Final - Y	How confident are you in your above answer? Please elaborate on your answer to the previous question: Do you think a technology like	5 Point Likert Scal Text
Q3 1 mai 1	this should be developed?: [Q1 - Final Answer]	Text
Q3 - Final - N	Please elaborate on your answer to the previous question: Do you think a technology like	Text
O4 Final V	this should be developed?: [Q1 - Final Answer]	Tout
Q4 - Final - Y	Under what circumstances would you switch your decision from [Q1 - Final Answer] should be developed to should not be developed?	Text
Q4 - Final - N	Under what circumstances would you switch your decision from [Q1 - Final Answer]	Text
	should not be developed to should be developed?	T. 0.
Q5 - Final	If [Use Case] exists, would you ever use its services (answer yes, even if you think you would use it very infraquently)?	Yes/No
Q6 - Final	would use it very infrequently)? How confident are you in your above answer?	5 Point Likert Scal
AI Perception Questio		1
AI Perception After	Before we continue, we'd like to get your thoughts on AI one more time. Overall, how	5 Point Likert Scal
An I ciception Aite	does the growing presence of artificial intelligence (AI) in daily life and society make you	J I OIII LIKEIT SCAI
	feel?	

Table 31: Study 2 Specific Question. The placeholder [Use Case] is used in place of the 10 use cases chosen for the studies.

Racial Identity	(N) (%) Age	N (%)	Gender Identity	N (%)	Education	N (%)
White or Caucasian	32 (31.4) 45-5	32 (31.4)	Man	49 (49.0)	Bachelor's degree	44 (43.1)
Black or African American	25 (24.5) 25-3	34 29 (28.4)	Non-male	51 (51.0)	Graduate degree*	18 (17.6)
Asian	18 (17.6) 35-4	14 12 (11.8)			Some college *	18 (17.6)
Mixed	15 (14.7) 55-0	64 12 (11.8)			High school diploma*	15 (14.7)
Other	12 (11.8) 18-2	24 9 (8.8)			Associates degree*	7 (6.9)
	2 (0.7) 65+	8 (7.8)			Some high school*	0(0.0)

Table 32: Labor Replacement Study 2 Survey: Racial, age, gender identities and education level of participants. Asterisk (*) denotes labels shortened due to space.

Minority/Disadvantaged Group	(N) (%)	Transgender	N (%)	Sexuality	N(%)	Political Leaning	N (%)
No	56 (54.9)	No	97 (95.1)	Heterosexual	76 (74.5)	Liberal	37 (36.3)
Yes	46 (45.1)	Yes	4 (3.9)	Others	26 (25.5)	Moderate	27 (26.5)
		Prefer not to say	1 (1.0)			Conservative	17 (16.7)
						Strongly liberal	16 (15.7)
						Strongly conservative	4 (3.9)
						Prefer not to say	1 (1.0)

Table 33: Labor Replacement Study 2 Survey: Additional demographic identities

Longest dence	Resi-	(N) (%)	Employment	N (%)	Occupation (Top 10)	N (%)	Religion	N (%)
United S America	tates of	96 (94.1)	Employed, 40+	44 (43.1)	Other	34 (33.3)	Christian	38 (37.3)
Others		6 (5.9)	Employed, 1-39	28 (27.5)	Educational Services	11 (10.8)	Agnostic	19 (18.6)
			Not employed, looking for work	19 (18.6)	Health Care and Social Assistance	10 (10.0)	Catholic	18 (17.6)
			Retired	4 (3.9)	Information	8 (7.8)	Nothing in particular	12 (11.8)
			Not employed, NOT looking for work	3 (2.9)	Prefer not to answer	8 (7.8)	Atheist	7 (6.9)
			Other: please specify	3 (2.9)	Retail Trade	7 (6.9)	Muslim	3 (2.9)
			Disabled, not able to work	1 (1.0)	Finance and Insurance	7 (6.9)	Something else, Specify	3 (2.9)
			Prefer not to dis- close	0 (0.0)	Professional, Scientific, and Technical Services	6 (5.9)	Jewish	1 (1.0)
					Manufacturing	6 (5.9)	Hindu	1 (1.0)
					Administrative and support and waste management services	5 (4.9)	Buddhist	0 (0.0)

Table 34: Labor Replacement Study 2 Survey: Additional demographic identities. The Occupation category was capped at the top 10 for brevity, with the remaining occupations merged together with the Other: please specify option.

Racial Identity	(N) (%)	Age	N(%)	Gender Identity	N(%)	Education	N (%)
White or Caucasian Black or African American Asian Mixed Other	35 (36.1) 22 (22.7) 19 (19.6) 13 (13.4) 8 (8.2) 2 (0.7)	45-54 25-34 55-64 35-44 18-24 65+ Prefer not to disclose	29 (29.9) 22 (22.7) 17 (17.5) 17 (17.5) 6 (6.2) 6 (6.2) 0 (0.0)	Non-male Man	50 (51.5) 47 (48.5)	Bachelor's degree Graduate degree* Some college * High school diploma* Associates degree* Some high school*	33 (34.0) 24 (24.7) 18 (18.6) 12 (12.4) 10 (10.3) 0 (0.0)

Table 35: Personal Use Cases Study 2 Survey: Racial, age, gender identities and education level of participants. Asterisk (*) denotes labels shortened due to space.

Minority/Disadvantaged Group	(N) (%)	Transgender	N (%)	Sexuality	N(%)	Political Leaning	N (%)
No	50 (51.5)	No	93 (95.9)	Heterosexual	76 (78.4)	Liberal	34 (35.1)
Yes	47 (48.5)	Yes	4 (4.1)	Others	21 (21.6)	Moderate	26 (26.8)
		Prefer not to say	0(0.0)			Strongly liberal	17 (17.5)
						Conservative	13 (13.4)
						Strongly conservative	6 (6.2)
						Prefer not to say	1 (1.0)

Table 36: Personal Use Cases Study 2 Survey: Additional demographic identities

Longest Residence	(N) (%)	Employment	N (%)	Occupation (Top 10)	N (%)	Religion	N (%)
United States of America	95 (97.9)	Employed, 40+	44 (45.4)	Other	36 (37.1)	Christian	43 (44.3)
Others	2 (2.1)	Employed, 1-39	23 (23.7)	Health Care and Social Assistance	13 (13.4)	Agnostic	12 (12.4)
		Not employed, looking for work	9 (9.3)	Information	9 (9.3)	Atheist	12 (12.4)
		Other: please specify	7 (7.2)	Finance and Insurance	8 (8.2)	Catholic	10 (10.3)
		Retired	6 (6.2)	Prefer not to answer	6 (6.2)	Nothing in particular	8 (8.2)
		Disabled, not able to work	5 (5.2)	Retail Trade	6 (6.2)	Muslim	4 (4.1)
		Not employed, NOT looking for work	2 (2.1)	Manufacturing	5 (5.1)	Something else, Specify	4 (4.1)
		Prefer not to dis- close	1 (1.0)	Educational Services	5 (5.1)	Buddhist	2 (2.1)
				Arts, Entertainment, and Recreation	5 (5.1)	Hindu	1 (1.0)
				Accommodation and Food Services	4 (4.1)	Jewish	1 (1.0)

Table 37: Personal Use Cases Study 1 Survey: Additional demographic identities. The Occupation category was capped at the top 10 for brevity, with the remaining occupations merged together with the Other: please specify option.